Skip to main content

Production, Economics, and Marketing of Yeast Single Cell Protein

  • Chapter
  • First Online:
Food Microbiology Based Entrepreneurship

Abstract

Increase in the world population living below the poverty line actuates the scientific community to find economic alternative to conventional expensive protein sources. Single Cell Protein (SCP), microbial biomass products produced by fermentation for human or animal consumption, is the good protein alternative. SCP is the term used to designate microbial protein cultivated on organic wastes to be utilized as a human food or animal feed. The SCP from microorganisms is convenient over other protein sources as it offers more advantages such as shorter doubling time, i.e., rapid growth on cheap substrates (raw materials), have high protein content, have less reliance upon environmental factors such as soil, water, and climate and small land requirements. Yeasts have been particularly important since it has been consumed by humans since ancient times in fermented foods. This chapter includes discussion on types of yeasts that can be used as SCPs, sources of organic sources for the cultivation of yeasts, fermentation methodology, protein harvesting, marketing, and business plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashok, R., et al. (2000). Bio resource technology. Journal of American Science, 16(8), 35.

    Google Scholar 

  • Bacha, U., et al. (2011). Comparative assessment of various agro-industrial wastes for Saccharomyces cerevisiae biomass production and its quality evaluation as single cell protein. Journal of Animal and Plant Sciences, 21(4), 844–849.

    CAS  Google Scholar 

  • Bennett, J., & Keller, N. (1997). Mycotoxins and their prevention. Fungal Biotechnology, 1997, 265–273.

    Google Scholar 

  • Berry, D., & Brown, C. (1987). Physiology of yeast growth. In Yeast biotechnology (pp. 159–199). Springer.

    Chapter  Google Scholar 

  • Bogdahn, I. (2015). Agriculture-independent, sustainable, fail-safe and efficient food production by autotrophic single-cell protein. PeerJ, 3, e1279.

    Google Scholar 

  • Bozakouk, A. (2002). Acid hydrolysis of Phragmites austral: is powder for production of single cell protein by Candida utilis. Journal of Research, 98, 876–897.

    Google Scholar 

  • Boze, H., Moulin, G., & Galzy, P. (1992). Production of food and fodder yeasts. Critical Reviews in Biotechnology, 12(1-2), 65–86.

    Article  CAS  Google Scholar 

  • Bratosin, B. C., Darjan, S., & Vodnar, D. C. (2021). Single cell protein: a potential substitute in human and animal nutrition. Sustainability, 13(16), 9284.

    Article  CAS  Google Scholar 

  • Chen, S., & Chiger, M. (1985). Production of Baker’s yeast. Springer.

    Google Scholar 

  • Cooney, C., Rha, C., & Tannenbaum, S. (1980). Single-cell protein: engineering, economics, and utilization in foods. In Advances in food research (pp. 1–52). Elsevier.

    Google Scholar 

  • Dobariya, R. G. (2013). Single cell protein and Baker’s yeast. Retrieved from https://www.pharmatutor.org/articles/single-cell-protein-bakers-yeast

  • Einsele, A. (1983). Biomass from higher n-alkanes. Biotechnology, 3, 43–81.

    Google Scholar 

  • Faust, U., & Präve, H. (1991). Biomass from methane and methanol. Biotechnology, 3, 84–108.

    Google Scholar 

  • Fiechter, A. (1984). Physical and chemical parameters of microbial growth. In Bioprocess parameter control (pp. 7–60). Springer.

    Chapter  Google Scholar 

  • Finnigan, T., Needham, L., & Abbott, C. (2017). Mycoprotein: a healthy new protein with a low environmental impact. In Sustainable protein sources (pp. 305–325). Elsevier.

    Chapter  Google Scholar 

  • Forage, A., & Righelato, R. (1979). Biomass from carbohydrates (pp. 289–292). Academic Press.

    Google Scholar 

  • García-Garibay, M., et al. (2014). Single cell protein. In Yeasts and bacteria. Springer.

    Google Scholar 

  • Hamdy, H. S. (2013). Production of mini-food by Aspergillus niger, Rhizopus oryzae and Saccharomyces cerevisiae using orange peels. Romanian Biotechnological Letters, 18(1), 7929–7946.

    CAS  Google Scholar 

  • Hitzman, D. (1986). The provesteen process–an ultra-high density fermentation (pp. 27–32). Elsevier Applied Science.

    Google Scholar 

  • Humphrey, A. (1968). Future of large scale fermentation for production of single cell protein (p. 330). MIT Press.

    Google Scholar 

  • Jamal, P., Alam, M., & Salleh, N. (2008). Media optimization for bioproteins production from cheaper carbon source. Journal of Engineering Science and Technology, 3(2), 124–130.

    Google Scholar 

  • Jarl, K. (2013). Production of microbial food from low-cost starch materials and purification of industry’s waste starch effluents through the symba yeast process. Food Technology, 2013, 23–26.

    Google Scholar 

  • John, R. P., et al. (2011). Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 102(1), 186–193.

    Article  CAS  Google Scholar 

  • John Rojan, P., Anisha, G., & Nampoothiri, K. (2011). Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 102(1), 186–193.

    Article  CAS  Google Scholar 

  • Jones, R., & Greenfield, P. (1984). Review of yeast ionic nutrition. I. Growth and fermentation requirements. Process Biochemistry, 19, 48–60.

    CAS  Google Scholar 

  • Junaid, F., Khawaja, L. A., & Ali, S. (2020). Single cell proteins as a potential meat substitute: a critical review. World Journal of Pharmaceutical Research, 9, 141–161.

    CAS  Google Scholar 

  • Kadim, I. T., et al. (2015). Cultured meat from muscle stem cells: a review of challenges and prospects. Journal of Integrative Agriculture, 14(2), 222–233.

    Article  CAS  Google Scholar 

  • Kargi, F., et al. (1980). Continuous aerobic conversion of poultry waste into single-cell protein using a single reactor: kinetic analysis and determination of optimal conditions. Biotechnology and Bioengineering, 22(8), 1567–1600.

    Article  CAS  Google Scholar 

  • Khan, M., et al. (2010). Production of single cell protein from Saccharomyces cerevisiae by utilizing fruit wastes. Nanobiotechnica Universale, 1(2), 127–132.

    Google Scholar 

  • Kieliszek, M., et al. (2017). Biotechnological use of Candida yeasts in the food industry: a review. Fungal Biology Reviews, 31(4), 185–198.

    Article  Google Scholar 

  • Litchfield, J. H. (1977). Comparative technical and economic aspects of single-cell protein processes. Advances in Applied Microbiology, 22, 267–305.

    Article  CAS  Google Scholar 

  • Moebus, O., & Teuber, M. (1983). General aspects of production of biomass by yeast fermentation from whey and permeate. In M. P. Ferranti & A. Fiechter (Eds.), Production and feeding of single cell protein. Springer.

    Google Scholar 

  • Mondal, A. K., et al. (2012). Utilization of fruit wastes in producing single cell protein. International Journal of Science, Environment and Technology, 1(5), 430–438.

    Google Scholar 

  • Moulin, G., Malige, B., & Galzy, P. (1983). Balanced flora of an industrial fermenter: production of yeast from whey. Journal of Dairy Science, 66(1), 21–28.

    Article  CAS  Google Scholar 

  • Muller, L. (1969). Yeast products from whey. Elsevier.

    Google Scholar 

  • Nangul, A., & Bhatia, R. (2021). Microorganisms: a marvelous source of single cell proteins. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 15–18.

    Google Scholar 

  • Nasseri, A., et al. (2011). Single cell protein: production and process. American Journal of Food Technology, 6(2), 103–116.

    Article  CAS  Google Scholar 

  • Nigam, J. (2000). Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World Journal of Microbiology and Biotechnology, 16(4), 367–372.

    Article  CAS  Google Scholar 

  • Obaeda, B. (2021). Yeasts as a source of single cell protein production: a review. Plant Archives, 21(1), 324–328.

    Article  Google Scholar 

  • Olbrich, H. (1973). Biotin activity of molasses. Branntweinwirtschaft, 113, 270.

    CAS  Google Scholar 

  • OpenPR. (2020). Single cell protein market - Business strategies, sales and growth rate, assessment to 2025. Retrieved from https://www.openpr.com/news/2169812/single-cell-protein-market-business-strategies-sales

  • Oura, E. (1983). Biomass from carbohydrates. Biotechnology, 3(1), 3–42.

    Google Scholar 

  • Queiroz, M. I., et al. (2007). The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresource Technology, 98(11), 2163–2169.

    Article  CAS  Google Scholar 

  • Rashad, M. M., Moharib, S. A., & Jwanny, E. W. (1990). Yeast conversion of mango waste or methanol to single cell protein and other metabolites. Biological Wastes, 32(4), 277–284.

    Article  CAS  Google Scholar 

  • Raziq, A., et al. (2020). Single cell protein (SCP) production and potential substrates: a comprehensive review. Pure and Applied Biology, 9(3), 1743–1754.

    Article  CAS  Google Scholar 

  • Ritala, A., et al. (2017). Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in Microbiology, 8, 2009.

    Article  Google Scholar 

  • Riviere, J. (1977). Microbial proteins. Industrial Applications of Microbiology, 4, 105.

    Google Scholar 

  • Rudravaram, R., et al. (2009). Bio (single cell) protein: issues of production, toxins and commercialisation status. In G. S. Ashworth & P. Azevedo (Eds.), Agricultural wastes (pp. 129–153). Hauppage.

    Google Scholar 

  • Sengupta, S., Bhowal, J., & Bhattacharya, U. (2006). The association of official analytical chemists. Journal of Environmental, 6, 99–126.

    Google Scholar 

  • Sharif, M., et al. (2021). Single cell protein: sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 531, 735885.

    Article  CAS  Google Scholar 

  • Srividya, A., et al. (2014). Single cell protein-a review. IJPRS, 2(4), 472–485.

    Google Scholar 

  • Suman, G., et al. (2015). Single cell protein production: a review. International Journal of Current Microbiology and Applied Sciences, 4(9), 251–262.

    Google Scholar 

  • Tannenbaum, S., & Wang, D. (1975). Single cell protein (Vol. II). MIT Press.

    Google Scholar 

  • Tesfaw, A., & Assefa, F. (2014). Co-culture: A great promising method in single cell protein production. Biotechnology and Molecular Biology Reviews, 9(2), 12–20.

    Article  Google Scholar 

  • Trevelyan, W. E. (1976). Chemical methods for the reduction of the purine content of Baker’s yeast, a form of single-cell protein. Journal of the Science of Food and Agriculture, 27(3), 225–230.

    Article  CAS  Google Scholar 

  • Ugalde, U., & Castrillo, J. (2002). Single cell proteins from fungi and yeasts. In Applied mycology and biotechnology (pp. 123–149). Elsevier.

    Google Scholar 

  • Webb, F. (1964). Biochemical engineering (p. 605). D. van Norstrand Comp. Ltd.

    Google Scholar 

  • White, J. (1954). Microbiological control of yeast growth processes. In Yeast technology (pp. 226–242). Chapman and Hall.

    Google Scholar 

  • Yousufi, M. K. (2012). To determine protein content of single cell protein produced by using various combinations of fruit wastes and two standard food fungi. International Journal of Advanced Biotechnology and Research, 3(1), 533–536.

    CAS  Google Scholar 

  • Yunus, F. N., Nadeem, M., & Rashid, F. (2015). Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. Journal of the Institute of Brewing, 121(4), 553–557.

    Article  CAS  Google Scholar 

  • Zepka, L. Q., et al. (2008). Production and biochemical profile of the microalgae Aphanothece microscopica Nägeli submitted to different drying conditions. Chemical Engineering and Processing: Process Intensification, 47(8), 1305–1310.

    Article  Google Scholar 

  • Zha, X., et al. (2021). Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresource Technology, 320, 124351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheth, U., Patel, S. (2023). Production, Economics, and Marketing of Yeast Single Cell Protein. In: Amaresan, N., Dharumadurai, D., Babalola, O.O. (eds) Food Microbiology Based Entrepreneurship. Springer, Singapore. https://doi.org/10.1007/978-981-19-5041-4_8

Download citation

Publish with us

Policies and ethics