Skip to main content

Changes in Plant Microbiome in Response to Abiotic Stress

  • Chapter
  • First Online:
Plant Microbiome for Plant Productivity and Sustainable Agriculture

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 37))

Abstract

Heavy metal, drought, salinity, temperature, and nutrient shortage are among abiotic factors that influence crop plants and jeopardize agricultural output. The association of a variety of microbes with plants is very significant for the growth and health of the plants for nutrient uptake, protection against phytopathogens, hormonal signaling for homeostasis, and acquired tolerance against various abiotic stresses. A community of these microbes that associates with plant is termed as plant microbiome. Recent research reveals that phenotypic and genotypic traits including length, water storage content, water storage capacity, nitrogen content, the phosphorus content of leaf, transpiration rate, and net photosynthetic rate are correlated with the composition of bacterial, archaeal, and fungal communities. Hence, a shift in the population density of these microbes in response to the abiotic stresses could significantly affect plant morphology and physiology. For example, drought could alter the microbial compositions in the rhizosphere and endosphere. The experimental studies revealed the depletion of several Acidobacteria, Verrucomicrobia, and Deltaproteobacteria followed by the enrichment of Actinobacteria and Chloroflexi during drought stress. Halotolerant microbes survive in high salt concentration expressing such traits that help plants to live in elevated salinity environments. All microorganisms respond to extreme temperatures by making specific polypeptides called heat shock proteins (HSPs). Certain bacterial strains produce exopolysaccharides (EPSs) that possess distinctive characteristics of holding water and also has cementing characteristics. The higher temperature increased Bacteroidetes and Verrucomicrobia while causing a decrease in the abundance of Proteobacteria. Engineering the rhizosphere of plants with specific abiotic stress-tolerant microbes makes a specific environment for the plant to nourish. This chapter will focus on different abiotic factors that affect the plant microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Daim IA, Bejai S, Meijer J (2019) Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Sci Rep 9(1):1–18

    Article  CAS  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2020) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomol Ther 10(1):42

    CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  • Amirjani M (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5(6):350–360

    Article  CAS  Google Scholar 

  • Ansari MI (2018) Plant microbiome and its functional mechanism in response to environmental stress. Int J Green Pharm 12:81–92

    Google Scholar 

  • Bagheri N, Alizadeh O, Zadeh SS, Aref F, Ordookhani K (2019) Biochemical investigation of potential of plant growth-promoting bacteria and auxin treatments to alleviate drought stress in wheat (Triticum aestivum L.). Eurasia J Biosci 13(2):1225–1230

    CAS  Google Scholar 

  • Bakken LR, Frostegård Å (2017) Sources and sinks for N2O, can microbiologist help to mitigate N2O emissions? In: Microbiology E (ed) vol 19. Wiley Online Library, pp 4801–4805

    Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Cold stress and photosynthesis. In: Photosynthesis, productivity and environmental stress. Wiley, Chichester, pp 27–37

    Chapter  Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282

    Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) The plant microbiome and its importance for plant and human health. Front Microbiol 5:1

    Article  Google Scholar 

  • Blom C, Voesenek L (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11(7):290–295

    Article  CAS  Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17(9):569–586

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Narayanan S, Erdayani E, Prasad PV (2020) Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol 20(1):1–12

    Article  Google Scholar 

  • Etesami H (2021) Potential advantage of rhizosheath microbiome, in contrast to rhizosphere microbiome, to improve drought tolerance in crops. Rhizosphere 20:100439

    Article  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105(43):16814–16819

    Article  CAS  Google Scholar 

  • Gago J, Daloso DM, Carriquí M, Nadal M, Morales M, Araújo WL et al (2020) The photosynthesis game is in the “inter-play”: mechanisms underlying CO2 diffusion in leaves. Environ Exp Bot 178:104174. https://doi.org/10.1016/j.envexpbot.2020.104174

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14(5):307–312

    Article  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494

    Article  Google Scholar 

  • Gupta S, Pandey S (2020) Enhanced salinity tolerance in the common bean (Phaseolus vulgaris) plants using twin ACC deaminase producing rhizobacterial inoculation. Rhizosphere 16:100241

    Article  Google Scholar 

  • Hanjra MA, Qureshi ME (2010) Global water crisis and future food security in an era of climate change. Food Policy 35(5):365–377

    Article  Google Scholar 

  • Hatfield J (2015) Temperature extremes: effect on plant growth and development. Weather Climate Extremes 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • He L, Yu L, Li B, Du N, Guo S (2018) The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biol 18(1):1–10

    Article  Google Scholar 

  • Hussain SS, Mehnaz S, Siddique KH (2018) Harnessing the plant microbiome for improved abiotic stress tolerance. In: Plant microbiome: stress response. Springer, New York, pp 21–43

    Chapter  Google Scholar 

  • Ianeva O (2009) Mechanisms of bacteria resistance to heavy metals. Mikrobiolohichnyi Zhurnal 71(6):54–65

    CAS  Google Scholar 

  • Itakura M, Uchida Y, Akiyama H, Hoshino YT, Shimomura Y, Morimoto S et al (2013) Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat Clim Chang 3(3):208–212

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian R (2018) From interaction to gene induction: an eco-friendly mechanism of PGPR-mediated stress management in the plant. In: Plant microbiome: stress response. Springer, New York, pp 217–232

    Chapter  Google Scholar 

  • Kaushal M, Wani S, Ecosystems P, Environment (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78

    Article  CAS  Google Scholar 

  • Khalid MF, Hussain S, Ahmad S, Ejaz S, Zakir I, Ali MA et al (2019) Impacts of abiotic stresses on growth and development of plants. In: Plant tolerance to environmental stress. CRC Press, West Palm Beach, FL, pp 1–8

    Google Scholar 

  • Khan N, Ali S, Shahid M, Mustafa A, Sayyed R, Curá J (2021a) Insights into the interactions among roots, rhizosphere and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10:1551. s note: MDPI stays neu-tral with regard to jurisdictional claims in …

    Article  CAS  Google Scholar 

  • Khan N, Ali S, Shahid MA, Mustafa A, Sayyed R, Curá JA (2021b) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cell 10(6):1551

    Article  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9(1):1–14

    Article  Google Scholar 

  • Kim SY, Slattery RA, Ort DR (2021) A role for differential Rubisco activase isoform expression in C4 bioenergy grasses at high temperature. GCB Bioenergy 13(1):211–223. https://doi.org/10.1111/gcbb.12768

    Article  CAS  Google Scholar 

  • Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front Microbiol 11:1216

    Article  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198(3):656–669. https://doi.org/10.1111/nph.12235

    Article  CAS  Google Scholar 

  • Liu H, Brettell LE, Qiu Z, Singh BK (2020) Microbiome-mediated stress resistance in plants. Trends Plant Sci 25(8):733–743

    Article  CAS  Google Scholar 

  • Liu Y, Xu Q, Li W, Yang X, Zheng Q, Li B et al (2019) Long-term high light stress induces leaf senescence in wheat (Triticum aestivum L.). Photosynthetica 57(3):830–840

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • Mishra GK (2017) Microbes in heavy metal remediation: a review on current trends and patents. Recent Pat Biotechnol 11:88–196

    Article  Google Scholar 

  • Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234. https://doi.org/10.1146/annurev-genet-120215-034952

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  Google Scholar 

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    Article  Google Scholar 

  • Negrão S, Schmöckel S, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  Google Scholar 

  • Osei-Bonsu I (2020) Thermotolerance of photosynthesis in cowpea (Vigna unguiculata). (Ph.D.), Michigan State University, Ann Arbor. https://www.proquest.com/dissertations-theses/thermotolerance-photosynthesis-cowpea-em-vigna/docview/2394838223/se-2?accountid=135034. ProQuest dissertations & theses global database. 27833893.

  • Pandey SN, Abid M, Khan M (2018) Diversity, functions, and stress responses of soil microorganisms. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Microorganisms for sustainability, vol 5. Springer, Singapore, pp 1–19

    Google Scholar 

  • Parvin S, Uddin S, Fitzgerald GJ, Tausz-Posch S, Armstrong R, Tausz M (2019) Free air CO2 enrichment (FACE) improves water use efficiency and moderates drought effect on N2 fixation of Pisum sativum L. Plant Soil 436(1):587–606

    Article  CAS  Google Scholar 

  • Patel KS, Naik JH, Chaudhari S, Amaresan N (2017) Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling. C R Biol 340(4):244–249

    Article  Google Scholar 

  • Prasad R (2021) Environmental pollution and remediation. Springer. ISBN: 978-981-15-5499-5. https://www.springer.com/gp/book/9789811554988

    Book  Google Scholar 

  • Prasad R (2022) Phytoremediation for environmental sustainability. Springer, Singapore. ISBN 978-9811656200. https://doi.org/10.1007/978-981-16-5621-7

    Book  Google Scholar 

  • Prasad R, Nayak SC, Kharwar RN, Dubey NK (2021) Mycoremediation and environmental sustainability, vol 3. Springer International Publishing. 978-3-030-54421-8. https://www.springer.com/gp/book/9783030544218

    Book  Google Scholar 

  • Raghuwanshi R, Prasad JK (2018) Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. Root Biol:303–321

    Google Scholar 

  • Razad A, Sutariati GAK, Rakian TC, Mamangkey J, Silalahi M (2021) Bio-priming using indigenous Pseudomonas fluorescens to improve local upland rice (Padi Gogo) production of Paebiu Kolopua and Pae Wuna cultivars. Int J Sci Technol Manag 2(5):1885–1899

    Article  Google Scholar 

  • Riesen O, Feller U (2005) Redistribution of nickel cobalt manganese zinc and cadmium via the phloem in young and maturing wheat. J Plant Nutr 28(3):421–430

    Article  CAS  Google Scholar 

  • Ritchie H, Reay DS, Higgins P (2018) Potential of meat substitutes for climate change mitigation and improved human health in high-income markets. Front Sustain Food Syst 2:16

    Article  Google Scholar 

  • Rovira AD (1965) Interactions between plant roots and soil microorganisms. Annu Rev Microbiol 19:241–266. https://doi.org/10.1146/annurev.mi.19.100165.001325

    Article  CAS  Google Scholar 

  • Sagar A, Sayyed R, Ramteke P, Sharma S, Marraiki N, Elgorban AM, Syed A (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26(9):1847–1854

    Article  CAS  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Drought stress tolerance in plants, vol 1. Springer, New York, pp 1–16

    Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS et al (2019) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul:1–23

    Google Scholar 

  • Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: a reservoir of novel genes and metabolites. Plant Gene. https://doi.org/10.1016/j.plgene.2019.100177

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. World J Microbiol Biotechnol 51:283–320

    CAS  Google Scholar 

  • Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergraduate Res 2:1–6

    Google Scholar 

  • Subiramani S, Ramalingam S, Muthu T, Nile SH, Venkidasamy B (2020) Development of abiotic stress tolerance in crops by plant growth-promoting. Phyto-Microb Stress Regul 125

    Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  Google Scholar 

  • Tewari S, Mishra A (2018) Flooding stress in plants and approaches to overcome. In: Plant metabolites and regulation under environmental stress. Elsevier, Amsterdam, pp 355–366

    Google Scholar 

  • Timm CM, Campbell AG, Utturkar SM, Jun SR, Parales RE, Tan WA, Pelletier DA (2015) Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Front Microbiol 6:1118. https://doi.org/10.3389/fmicb.2015.01118

    Article  Google Scholar 

  • Tisarum R, Theerawitaya C, Samphumphuang T, Phisalaphong M, Singh HP, Cha-Um S (2019) Promoting water deficit tolerance and anthocyanin fortification in pigmented rice cultivar (Oryza sativa L. subsp. indica) using arbuscular mycorrhizal fungi inoculation. Physiol Mol Biol Plants 25(4):821–835

    Article  CAS  Google Scholar 

  • Tosi M, Mitter EK, Gaiero J, Dunfield K (2020) It takes three to tango: the importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome. Can J Microbiol 66(7):413–433

    Article  CAS  Google Scholar 

  • van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

    Article  Google Scholar 

  • van der Heijden MG, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14(2):e1002378

    Article  Google Scholar 

  • Venkatramanan V, Shah S, Prasad R (2020a) Global climate change and environmental policy: resilient and smart agriculture. Springer, Singapore. ISBN: 978-981-329-855-2. https://www.springer.com/gp/book/9789813298552

    Book  Google Scholar 

  • Venkatramanan V, Shah S, Prasad R (2020b) Global climate change and environmental policy: agriculture perspectives. Springer, Singapore. ISBN: 978-981-13-9569-7. https://doi.org/10.1007/978-981-13-9570-3

    Book  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  Google Scholar 

  • Wang Y, Li J, Gu W, Zhang Q, Tian L, Guo S, Wei S (2018) Exogenous application of 5-aminolevulinic acid improves low-temperature stress tolerance of maize seedlings. Crop Pasture Sci 69(6):587–593. https://doi.org/10.1071/CP17401

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Schol Res Notices 2011:1–20

    Google Scholar 

  • Xalxo R, Yadu B, Chandra J, Chandrakar V, Keshavkant S (2020) Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress. In: Wani SH, Kumar V (eds) Heat stress tolerance in plants: physiological, molecular and genetic perspectives. Wiley, pp 77–115

    Chapter  Google Scholar 

  • Xu G, Singh SK, Reddy VR, Barnaby JY, Sicher RC, Li T (2016) Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. J Plant Physiol 205:20–32. https://doi.org/10.1016/j.jplph.2016.08.003

    Article  CAS  Google Scholar 

  • Yang X, Xu H, Li D, Gao X, Li T, Wang R (2018) Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56(3):884–892

    Article  CAS  Google Scholar 

  • Zhang F, Lu K, Gu Y, Zhang L, Li W, Li Z (2020) Effects of low-temperature stress and brassinolide application on the photosynthesis and leaf structure of tung tree seedlings. Front Plant Sci 10:1767

    Article  Google Scholar 

  • Zhou Z, Wei C, Liu H, Jiao Q, Li G, Zhang J et al (2021) Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity. Environ Sci Pollut Res Int 29:21739. https://doi.org/10.1007/s11356-021-17371-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Khola Tazeen for her help in the literature collection and proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irfan, M., Aslam, H., Maqsood, A., Tazeen, S.K., Mahmood, F., Shahid, M. (2023). Changes in Plant Microbiome in Response to Abiotic Stress. In: Chhabra, S., Prasad, R., Maddela, N.R., Tuteja, N. (eds) Plant Microbiome for Plant Productivity and Sustainable Agriculture . Microorganisms for Sustainability, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-19-5029-2_5

Download citation

Publish with us

Policies and ethics