Skip to main content

Manufacturing Aspects of Bast Fiber-Based Composites

  • Chapter
  • First Online:
Bast Fibers and Their Composites

Abstract

Each day, an increasing number of objects for several industries, including automobile, aerospace, biomedical, construction, and even electronics industry, are manufactured using bast fiber-based composites. Composite manufacturing depends on the matrix and reinforcement configuration. Many techniques can be used, and the selection depends on the final use or purpose of the composites. For example, it is possible to obtain simple laminates by casting or using a most expensive technique like compression molding. In this chapter, the main aspects of the processing techniques are discussed. Comments are provided on alternatives to improve the final quality of composites, and in some cases, aspects of how nanostructures can be included during composite manufacturing are introduced. The analyzed techniques are for polymer and cementitious matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nassar MMA, Arunachalam R, Alzebdeh K (2017) Machinability of natural fiber reinforced composites: a review. Int J Adv Manuf Technol 88:2985–3004. https://doi.org/10.1007/s00170-016-9010-9

    Article  Google Scholar 

  2. Baley C, Bourmaud A, Davies P (2021) Eighty years of composites reinforced by flax fibres: a historical review. Compos A. https://doi.org/10.1016/j.compositesa.2021.106333

    Article  Google Scholar 

  3. Ghosh AK, Dwivedi M (2020) Processability of polymeric composites. Springer, New Delhi

    Book  Google Scholar 

  4. Shamsuyeva M, Endres H-F (2021) Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Composites Part C. https://doi.org/10.1016/j.jcomc.2021.100168

    Article  Google Scholar 

  5. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  6. Zin MH, Razzi MF, Othman S et al (2016) A review on the fabrication method of bio-sourced hybrid composites for aerospace and automotive applications. IOP Conf Series: Mat Sci Eng. https://doi.org/10.1088/1757-899X/152/1/012041

  7. Ferrara L, Ferreira SR, Krelani V et al (2017) Cementitious composites reinforced with natural fibres. In: Barros J, Ferrara L, Martinelli E (Eds) Recent advances on green concrete for structural purposes. Research for development, Springer, Cham, pp 197–331. https://doi.org/10.1007/978-3-319-56797-6_9

  8. Nepomuceno NC, Seixas AAA, Medeiros ES et al (2021) Evaluation of conductivity of nanostructured polyaniline/cellulose nanocrystals (PANI/CNC) obtained via in situ polymerization. J Solid State Chem. https://doi.org/10.1016/j.jssc.2021.122372

    Article  Google Scholar 

  9. Peças P, Carvalho H, Salman H et al (2018) Natural fibre composites and their applications: a review. J Compos Sci. https://doi.org/10.3390/jcs2040066

    Article  Google Scholar 

  10. Sessini V, Navarro-Baena I, Arrieta MP et al (2018) Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polym Degrad Stab 152:126-138. https://doi.org/10.1016/j.polymdegradstab.2018.04.012

  11. Musa C, Kervoëlen A, Danjou P-E et al (2020) Bio-based unidirectional composite made of flax fibre and isosorbide-based epoxy resin. Mater Lett. https://doi.org/10.1016/j.matlet.2019.126818

    Article  Google Scholar 

  12. Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Composites Part B: Eng 56:296–317. https://doi.org/10.1016/j.compositesb.2013.08.014

    Article  CAS  Google Scholar 

  13. Liu DY, Yuan XW, Bhattacharyya D et al (2010) Characterisation of solution cast cellulose nanofiber—reinforced poly(lactic acid). Express Polym Lett 4:26–31. https://doi.org/10.3144/expresspolymlett.2010.5

    Article  CAS  Google Scholar 

  14. Gañán P, Mondragon I (2004) Fique fiber-reinforced polyester composites: effects of fiber surface treatments on mechanical behavior. J Mat Sci 39:3121–3128. https://doi.org/10.1023/B:JMSC.0000025841.67124.c3

    Article  Google Scholar 

  15. Zafeiropoulos NE, Baillie CA, Matthews FL (2001) The effect of transcrystallinity on the interface of green flax/polypropylene composite materials. Adv Compos Lett. https://doi.org/10.1177/096369350101000503

    Article  Google Scholar 

  16. Bos HL, Müssig J, van den Oever MJA (2006) Mechanical properties of short-flax-fibre reinforced compounds. Composites Part A: App Sci Manuf 37:1591–1604. https://doi.org/10.1016/j.compositesa.2005.10.011

    Article  CAS  Google Scholar 

  17. Pupure L, Varna J, Joffe R et al (2020) Mechanical properties of natural fiber composites produced using dynamic sheet former. Wood Mat Sci Eng 15:76–86. https://doi.org/10.1080/17480272.2018.1482368

    Article  Google Scholar 

  18. Campana C, Leger R, Sonnier R et al (2018) Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Composite A: Appl Sci Manuf 107:171–179. https://doi.org/10.1016/j.compositesa.2017.12.029

    Article  CAS  Google Scholar 

  19. Wang J, Wu W, Wang W et al (2011) Effect of a coupling agent on the properties of hemp-hurd-powder-filled styrene–butadiene rubber. J Appl Polym Sci 121:681–689. https://doi.org/10.1002/app.33744

    Article  CAS  Google Scholar 

  20. Moudood A, Hall W, Öchsner A et al (2019) Effect of moisture in flax fibres on the quality of their composites. J Nat Fibers 16:209–224. https://doi.org/10.1080/15440478.2017.1414651

    Article  CAS  Google Scholar 

  21. Correia CA, Oliveira LMVV et al (2017) The influence of bleached jute fiber filler on the properties of vulcanized natural rubber. Mat Res 20:466–471. https://doi.org/10.1590/1980-5373-MR-2017-0126

    Article  Google Scholar 

  22. Santulli C, Rallini M, Puglia D et al (2020) Characterization of licorice root waste for prospective use as filler in more eco-friendly composite materials. Processes 8:1–12. https://doi.org/10.3390/pr8060733

    Article  CAS  Google Scholar 

  23. Herrera N, Olsén P, Berglund LA (2020) Strongly improved mechanical properties of thermoplastic biocomposites by PCL grafting inside holocellulose wood fibers. ACS Sustainable Chem Eng. https://doi.org/10.1021/acssuschemeng.0c02512

  24. Dias Machado Lopes M, de Souza PM, Gazem PR, de Carvalho J et al (2021) Natural based polyurethane matrix composites reinforced with bamboo fiber waste for use as oriented strand board. J Mat Res Techn 12:2317–2324. https://doi.org/10.1016/j.jmrt.2021.04.023

    Article  CAS  Google Scholar 

  25. Ali ME, Yong CK, Ching YC et al (2015) Effect of single and double stage chemically treated kenaf fibers on mechanical properties of polyvinyl alcohol film. BioRes 10:822–838

    Article  Google Scholar 

  26. Devadas A, Nirmal U, Hossen J (2018) Investigation into mechanical & tribological performance of kenaf fibre particle reinforced composite. Cogent Eng. https://doi.org/10.1080/23311916.2018.1479210

    Article  Google Scholar 

  27. Kikuchi T, Tani Y, Takai Y et al (2014) Mechanical properties of jute composite by spray up fabrication method. 11th eco-energy and materials science and engineering (11th EMSES). Energy Procedia 56:289–297. https://doi.org/10.1016/j.egypro.2014.07.160

    Article  CAS  Google Scholar 

  28. Fiore V, Valenza A, Di Bella G (2012) Mechanical behavior of carbon/flax hybrid composites for structural applications. J Compos Mat 46:2089–2096. https://doi.org/10.1177/0021998311429884

    Article  Google Scholar 

  29. Almansour FA, Dhakal HN, Zhang ZY (2017) Effect of water absorption on mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos Struct 168:813–825. https://doi.org/10.1016/j.compstruct.2017.02.081

    Article  Google Scholar 

  30. Di Landro L, Janszen G (2014) Composites with hemp reinforcement and bio-based epoxy matrix. Composites Part B: Eng 67:220–226. https://doi.org/10.1016/j.compositesb.2014.07.021

    Article  CAS  Google Scholar 

  31. Andre N, Ariawan D, Mohd Ishak Z (2017) Mechanical properties and micromechanical analysis of nonwoven kenaf fibre/epoxy composites produced by resin transfer moulding. J Compos Mat 51:1875-1885. https://doi.org/10.1177/0021998316664197

  32. Lehtiniemi P, Dufva K, Berg T et al (2011) Natural fiber-based reinforcements in epoxy composites processed by filament winding. J Reinf Plast Compos 30:1947–1955. https://doi.org/10.1177/0731684411431019

    Article  CAS  Google Scholar 

  33. Bos K, Molenveld W, Teunissen AM (2004) Compressive behaviour of unidirectional flax fibre reinforced composites. J Mat Sci 39:2159–2168. https://doi-org.consultaremota.upb.edu.co/10.1023/B:JMSC.0000017779.08041.49

  34. Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54:355–360. https://doi.org/10.1016/S0263-8223(01)00110-6

    Article  Google Scholar 

  35. Lotfi A, Li H, Viet D et al (2021) Review natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos Mat 34:238–284. https://doi.org/10.1177/0892705719844546

    Article  CAS  Google Scholar 

  36. Ishak NM, Malingam SD, Mansor MR et al (2021) Investigation of natural fibre metal laminate as car front hood. Mater Res Express. https://doi.org/10.1088/2053-1591/abe49d

    Article  Google Scholar 

  37. Sreenivasan S, Sulaiman S, Baharudin BTHT et al (2015) Mechanical properties of novel kenaf short fiber reinforced bulk molding compounds (BMC). Adv Mater Process Technol 1:49–55. https://doi.org/10.1080/2374068X.2015.1112130

    Article  Google Scholar 

  38. Patel HK, Balasubramanian V, Peijs T (2017) The fracture toughness of natural fibre- and glass fibre-reinforced SMC. Plast Rubber Compos 46:355–364. https://doi.org/10.1080/14658011.2017.1357868

    Article  CAS  Google Scholar 

  39. Mahmud S, Hasan KMF, Jahid MdA (2021) Review. Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci 56:7231–7264. https://doi.org/10.1007/s10853-021-05774-9

    Article  CAS  Google Scholar 

  40. Torres FG, Aguirre M (2003) Rotational moulding and powder processing of natural fibre reinforced thermoplastics. Int Polym Process. https://doi.org/10.3139/217.1736

    Article  Google Scholar 

  41. Oksman K, Skrifvarsb M, Selinc JF. (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci Techn 63:1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9

  42. Fidan I, Imeri A, Gupta A et al (2019) The trends and challenges of fiber reinforced additive manufacturing. Int J Adv Manuf Syst 102:1801–1818. https://doi.org/10.1007/s00170-018-03269-7

    Article  Google Scholar 

  43. Quintana G, Velásquez J, Betancourt S et al (2009) Binderless fiberboard from steam exploded banana bunch. Ind Crops Prod 29:60–66. https://doi.org/10.1016/j.indcrop.2008.04.007

    Article  CAS  Google Scholar 

  44. Montoya-Rojo U, Álvarez-López C, Gañán-Rojo (2021) All-cellulose composites prepared by partial dissolving of cellulose fibers from Musaceae leaf-sheath waste. J Compos Mat. https://doi.org/10.1177/00219983211006886

  45. Zhang R, Zhu J (2021) Review. Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci 56:7231–7264. https://doi.org/10.1007/s10853-021-05774-9

    Article  CAS  Google Scholar 

  46. Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromol 8:2712–2716. https://doi.org/10.1021/bm0703416

    Article  CAS  Google Scholar 

  47. Yousefi H, Faezipour M, Nishino T et al (2011) All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polym J 43:559–564. https://doi.org/10.1038/pj.2011.31

    Article  CAS  Google Scholar 

  48. Page J, Khadraoui F, Gomina M et al (2021) Enhancement of the long-term mechanical performance of flax fiber-reinforced cementitious composites by using alternative binders. J Build Eng. https://doi.org/10.1016/j.jobe.2021.102323

    Article  Google Scholar 

  49. Gómez Hoyos C, Zuluaga R, Gañán P et al (2019) Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. J Clean Prod 235:1540–1548. https://doi.org/10.1016/j.jclepro.2019.06.292

  50. Vallejos ME, Peresin MS, Rojas OJ (2012) All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J Polym Environ 20:1075–1083. https://doi.org/10.1007/s10924-012-0499-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Universidad Pontificia Bolivariana and NANOCELIA network of the Iberoamerican Program of Science and Technology for Development (CYTED), for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piedad Gañán Rojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallego, R.Z., Vélez-Acosta, L.M., Gómez-Hoyos, C., Velásquez-Cock, J., Serpa-Guerra, A., Rojo, P.G. (2022). Manufacturing Aspects of Bast Fiber-Based Composites. In: Rajeshkumar, G., Devnani, G., Sinha, S., Sanjay, M., Siengchin, S. (eds) Bast Fibers and Their Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4866-4_7

Download citation

Publish with us

Policies and ethics