Skip to main content

Gear Fault Detection, Identification and Classification Using MLP Neural Network

  • Conference paper
  • First Online:
Recent Advances in Structural Health Monitoring and Engineering Structures

Abstract

Gear fault detection, identification and classification are highly complicated tasks, as the faults which affect gearboxes tend to share similar frequency signatures. Therefore, load and speed changes in a rotating machinery inevitably provide inaccurate results. However, identifying the fault remains critical, as each individual gear fault influences overall mechanism operation in different manners. Therefore, defect identification and classification appear as the hardest challenge for a geared systems. An automatic method to detect, identify and classify different gear failures is presented in this paper. The intelligent approach consists of a combination of MODWPT, entropy and MLPNN. MODWPT was developed to decompose the signals with a uniform frequency bandwidth. Entropy is employed to build the feature matrix in the feature extraction phase. Then, MLP offers a very efficient classification tool for features classification stage. Based on data sets taken from a gearbox bench test with a good and five varied gear states under various loads and speeds, experimental results presented the efficiency of our technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Royal Soc A 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang Y, He Y, Cheng J, Yu D (2009) A gear fault diagnosis using Hilbert spectrum based on MODWPT and a comparison with EMD approach. Measurement 42(4):542–551. https://doi.org/10.1016/j.measurement.2008.09.011

    Article  Google Scholar 

  3. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  4. Lei Y, He Z, Zi Y (2009) Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech Syst Signal Process 23(4):1327–1338. https://doi.org/10.1016/j.ymssp.2008.11.005

    Article  Google Scholar 

  5. Zhou Y, Tao T, Mei X, Jiang G, Sun N (2011) Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method. Robot Comput-Integr Manuf 27(4):785–793. https://doi.org/10.1016/j.rcim.2010.12.001

  6. Mahgoun H, Bekka RE, Felkaoui A (2012) Gearbox fault diagnosis using ensemble empirical mode decomposition (EEMD) and residual signal. Mech Ind 13(1):33–44. https://doi.org/10.1051/meca/2011150

    Article  Google Scholar 

  7. Amarnath M, Krishna IRP (2013) Detection and diagnosis of surface wear failure in a spur geared system using EEMD based vibration signal analysis. Tribol Int 61:224–234. triboint.2013.01.001

    Google Scholar 

  8. Yang CY, Wu TY (2015) Diagnostics of gear deterioration using EEMD approach and PCA process. Measurement 61:75–87

    Article  Google Scholar 

  9. Smith JS (2005) The local mean decomposition and its application to EEG perception data. J R Soc Interface 2(5):443–454. https://doi.org/10.1098/rsif.2005.0058

    Article  Google Scholar 

  10. Chen B, He Z, Chen X, Cao H, Cai G, Zi Y (2011) A demodulating approach based on local mean decomposition and its applications in mechanical fault diagnosis. Meas Sci Technol 22(5):055704. https://doi.org/10.1088/0957-0233/22/5/055704

    Article  Google Scholar 

  11. Cheng J, Zhang K, Yang Y (2012) An order tracking technique for the gear fault diagnosis using local mean decomposition method. Mech Mac Theor 55:67–76. mechmachtheory.2012.04.008

    Google Scholar 

  12. Cheng J, Yang Y, Yang Y (2012) A rotating machinery fault diagnosis method based on local mean decomposition. Dig Signal Process 22(2):356–366. https://doi.org/10.1016/j.dsp.2011.09.008

    Article  MathSciNet  Google Scholar 

  13. Liu WY, Zhang WH, Han JG, Wang GF (2012) A new wind turbine fault diagnosis method based on the local mean decomposition. Renew Energy 48:411–415. https://doi.org/10.1016/j.renene.2012.05.018

    Article  Google Scholar 

  14. Kidar T, Thomas M, Guilbault R, El Badaoui M (2013) Comparison between the efficiency of L.M.D and E.M.D algorithms for early detection of gear defects. Mech Ind 14(2):121–127. https://doi.org/10.1051/meca/2012037

    Article  Google Scholar 

  15. Liu H, Han M (2014) A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech Mach Theory 75:67–78. https://doi.org/10.1016/j.mechmachtheory.2014.01.011

    Article  Google Scholar 

  16. Liu Z, Jin Y, Zuo MJ (2016) Time-frequency representation based on robust local mean decomposition. In: ASME international mechanical engineering congress and exposition. American Society of Mechanical Engineers, New York, 8. https://doi.org/10.1115/IMECE2016-65184

  17. Liu Z, Jin Y, Zuo MJ, Feng Z (2017) Time-frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis. Mech Syst Signal Process 95:468–487

    Article  Google Scholar 

  18. Afia A, Rahmoune C, Benazzouz D. An early gear fault diagnosis method based on RLMD, Hilbert transform and cepstrum analysis

    Google Scholar 

  19. Li Z, Ma Z, Liu Y, Teng W, Jiang R (2015) Crack fault detection for a gearbox using discrete wavelet transform and an adaptive resonance theory neural network. J Mech Eng 61(1):63–73. https://doi.org/10.5545/sv-jme.2014.1769

    Article  Google Scholar 

  20. Heydarzadeh M, Kia SH, Nourani M, Henao H, Capolino G-A (2016) Gear fault diagnosis using discrete wavelet transform and deep neural networks. In: IECON, 42nd annual conference of the IEEE industrial electronics society. Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp 1494–1500. 7793549

    Google Scholar 

  21. Er-raoudi M, Diany M, Aissaoui H, Mabrouki M (2016) Gear fault detection using artificial neural networks with discrete wavelet transform and principal component analysis. J Mech Eng Sci 10(2):2016–2029. https://doi.org/10.15282/jmes.10.2.2016.6.0190

  22. Sanz J, Perera R, Huerta C (2012) Gear dynamics monitoring using discrete wavelet transformation and multi-layer perceptron neural networks. Appl Soft Comput 12(9):2867–2878. asoc.2012.04.003

    Google Scholar 

  23. Bajric R, Zuber N, Skrimpas GA, Mijatovic N (2015) Feature extraction using discrete wavelet transform for gear fault diagnosis of wind turbine gearbox. Shock Vib 2016:6748469. 1155/2016/6748469

    Google Scholar 

  24. Wu J-D, Hsu C-C (2009) Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy–logic inference. Expert Syst Appl 36(2):3785–3794. 1016/j.eswa.2008.02.026

    Google Scholar 

  25. Shan P-W, Li M (2010) Nonlinear time-varying spectral analysis: HHT and MODWPT. Math Probl Eng 2010:618231

    Article  MathSciNet  MATH  Google Scholar 

  26. Afia A, Rahmoune C, Benazzouz D (2018) Gear fault diagnosis using autogram analysis. Adv Mech Eng 10(12):1–11

    Article  Google Scholar 

  27. Afia A, Rahmoune C, Benazzouz D, Merainani B, Fedala S (2020) New intelligent gear fault diagnosis method based on Autogram and radial basis function neural network. Adv Mech Eng 12(5):1687814020916593

    Article  Google Scholar 

  28. Afia A, Rahmoune C, Benazzouz D, Merainani B, Fedala S (2019) New gear fault diagnosis method based on modwpt and neural network for feature extraction and classification. J Test Eval 49(2):1064–1085

    Google Scholar 

  29. Gougam F, Rahmoune C, Benazzouz D, Afia A, Zair M (2020) Bearing faults classification under various operation modes using time domain features, singular value decomposition, and fuzzy logic system. Adv Mech Eng 12(10):1687814020967874

    Article  Google Scholar 

  30. Gougam F, Rahmoune C, Benazzouz D, Merainani B (2019) Bearing fault diagnosis based on feature extraction of empirical wavelet transform (EWT) and fuzzy logic system (FLS) under variable operating conditions. J Vibroeng 21(6):1636–1650

    Article  Google Scholar 

  31. Touzout W, Benazzouz D, Gougam F, Afia A, Rahmoune C (2020) Hybridization of time synchronous averaging, singular value decomposition, and adaptive neuro fuzzy inference system for multi-fault bearing diagnosis. Adv Mech Eng 12(12):1687814020980569

    Article  Google Scholar 

  32. Gougam F, Chemseddine R, Benazzouz D, Benaggoune K, Zerhouni N (2020) Fault prognostics of rolling element bearing based on feature extraction and supervised machine learning: Application to shaft wind turbine gearbox using vibration signal. Proc Inst Mech Eng C J Mech Eng Sci 6:0954406220976154

    Google Scholar 

  33. Gougam F, Rahmoune C, Benazzouz D, Varnier C, Nicod JM (2020) Health monitoring approach of bearing: application of adaptive neuro fuzzy inference system (ANFIS) for RUL-estimation and Autogram analysis for fault-localization. In: 2020 prognostics and health management conference (PHM-Besançon), 4 May 2020, pp 200–206. IEEE

    Google Scholar 

  34. Samanta B (2004) Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mech Syst Signal Process 18(3):625–644. https://doi.org/10.1016/S0888-3270(03)00020-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afia Adel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adel, A., Hand, O., Fawzi, G., Walid, T., Chemseddine, R., Djamel, B. (2023). Gear Fault Detection, Identification and Classification Using MLP Neural Network. In: Rao, R.V., Khatir, S., Cuong-Le, T. (eds) Recent Advances in Structural Health Monitoring and Engineering Structures. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-4835-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4835-0_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4834-3

  • Online ISBN: 978-981-19-4835-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics