Skip to main content

Medical Diagnosis Using Image-Based Deep Learning and Supervised Hashing Approach

  • Conference paper
  • First Online:
Applications of Artificial Intelligence and Machine Learning

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 925))

  • 795 Accesses

Abstract

Due to the high use of digital images in hospitals and clinics, there is an increase in the size of medical images’ databases. It makes it difficult to manage and to retrieve similar images for the localization of disease and differentiate between the diseases from the databases which forces the use of features-based systems. This study presents a novel CNN architecture for the Highlight Based Recovery framework for retrieving medical images quickly and efficiently for identifying Covid-19. For the purpose of training the network, multimodal datasets are utilized and split into two types. The lungs invaded by Covid-19 are in one class, while the reduced lung images are in another. To decrease the search space, the compensated CNN’s learnt components are obtained with the hash method’s quick processing feature. With class-based expectations, the best retrieval outcomes are attained with 94.5% average prediction performance and 0.87 average mean precision for this retrieval challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khened M, Kollerathu VA, Krishnamurthi G (2019) Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Med Image Anal 51:21–45. ISSN 1361-8415

    Google Scholar 

  2. Bakkouri I, Afdel K (2019) Multi-scale CNN based on region proposals for efficient breast abnormality recognition. Multimed Tools Appl 78:12939

    Article  Google Scholar 

  3. Qayyum A, Anwar SM, Awais M, Majid M (2017) Medical image retrieval using deep convolutional neural network. Neurocomputing

    Google Scholar 

  4. Mizotin M, Benois-Pineau J, Allard M, Catheline G (2012) Feature-based brain MRI retrieval for Alzheimer disease diagnosis. In: 2012 19th IEEE international conference on image processing, pp 1241–1244

    Google Scholar 

  5. Rahman MM, Antani SK, Thoma GR (2011) A learning-based similarity fusion and filtering approach for biomedical image retrieval using SVM classification and relevance feedback. IEEE Trans Inf Technol Biomed 15(4):640–646

    Article  Google Scholar 

  6. Zhang F et al (2016) Dictionary pruning with visual word significance for medical image retrieval. Neurocomputing 177:75–88

    Article  Google Scholar 

  7. Jia Y et al (2014) Caffe: convolutional architecture for fast features embedding. In: Proceedings of the ACM international conference on multimedia, pp 675–678

    Google Scholar 

  8. Khatami A, Babaie M, Khosravi A, Tizhoosh HR, Salaken SM, Nahavandi S (2017) A deep-structural medical image classification for a Radon-based image retrieval. In: Proceedings of the IEEE 30th Canadian conference on electrical and computer engineering (CCECE), Windsor, ON, USA, April/May 2017, pp 1–4

    Google Scholar 

  9. Lu J, Liong VE, Zhou J (2017) Deep hashing for scalable image search. IEEE Trans Image Process 26(5):2352–2367

    Google Scholar 

  10. Dureja A, Pahwa P (2019) Analysis of non-linear activation functions for classification tasks using convolutional neural networks. Recent Patents Comput Sci 12:156. https://doi.org/10.2174/2213275911666181025143029

    Article  Google Scholar 

  11. Liong VE, Lu J, Wang G, Moulin P, Zhou J (2015) Deep hashing for compact binary codes learning. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 2475–2483

    Google Scholar 

  12. Wu C, Li Y, Zhao Z et al (2019) Image classification method rationally utilizing spatial information of the image. Multimedia Tools Appl 78:19181

    Article  Google Scholar 

  13. Dureja A, Pahwa P (2018) Image retrieval techniques: a survey. Int J Eng Technol (IJET, UAE) 7(12):215–219

    Google Scholar 

  14. Xia R, Pan Y, Lai H, Liu C, Yan S (2014) Supervised hashing for image retrieval via image representation learning. In: Proceedings of the national conference on artificial intelligence, vol 3, pp 2156–2163

    Google Scholar 

  15. Baskar D, Jayanthi VS, Jayanthi AN (2019) An efficient classification approach for detection of Alzheimer’s disease from biomedical imaging modalities. Multimed Tools Appl 78:12883

    Article  Google Scholar 

  16. Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang G, Bandula S, Moore CM, Emberton M, Ourselin S, Alison Noble J, Barratt DC, Vercauteren T (2018) Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal 49:1–13. ISSN 1361-8415

    Google Scholar 

  17. Lowe G (2004) SIFT-The scale invariant features transform. Int J 2:91–110

    Google Scholar 

  18. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision – ECCV 2006, ECCV 2006. Lecture notes in computer science, vol 3951

    Google Scholar 

  19. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems

    Google Scholar 

  20. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR

    Google Scholar 

  21. Yan Z et al (2016) Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging 35(5):1332–1343

    Article  Google Scholar 

  22. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216

    Article  Google Scholar 

  23. van Tulder G, de Bruijne M (2016) Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines. IEEE Trans Med Imaging 35(5):1262–1272

    Article  Google Scholar 

  24. Moeskops P et al (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261

    Article  Google Scholar 

  25. Seetharaman K, Sathiamoorthy S (2016) A unified learning framework for content based medical image retrieval using a statistical model. J King Saud Univ-Comput Inf Sci 28(1):110–124

    Google Scholar 

  26. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: AIStats, p 275

    Google Scholar 

  27. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AIStats, pp 249–256

    Google Scholar 

  28. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  29. Gionis A, Indyk P, Motwani R et al (1999) Similarity search in high dimensions via hashing. In: VLDB, vol 99, pp 518–529

    Google Scholar 

  30. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing systems, pp 1753–1760

    Google Scholar 

  31. Gong Y, Lazebnik S, Gordo A, Perronnin F (2013) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans Pattern Anal Mach Intell 35(12):2916–2929

    Article  Google Scholar 

  32. Lin K, Yang H-F, Hsiao J-H, Chen C-S (2015) Deep learning of binary hash codes for fast image retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 27–35

    Google Scholar 

  33. Kermany D, Goldbaum M, Cai et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172:1122–1131

    Google Scholar 

  34. COVID-19 CT scans (2021). https://www.kaggle.com/andrewmvd/covid19-ct-scans

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Dureja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dureja, A., Pahwa, P. (2022). Medical Diagnosis Using Image-Based Deep Learning and Supervised Hashing Approach. In: Unhelker, B., Pandey, H.M., Raj, G. (eds) Applications of Artificial Intelligence and Machine Learning. Lecture Notes in Electrical Engineering, vol 925. Springer, Singapore. https://doi.org/10.1007/978-981-19-4831-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4831-2_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4830-5

  • Online ISBN: 978-981-19-4831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics