Skip to main content

Microorganisms in the Pathogenesis and Management of Crohn’s Disease (CD)

  • Chapter
  • First Online:
Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases

Abstract

Crohn’s disease (CD) is a chronic inflammatory bowel disease. It is considered to affect any part of gastrointestinal tract, but it majorly affects ileum and colon. Previous studies suggest that the etiology of CD is multifactorial including environmental, genetic, and infectious factors. Numerous studies report a dysbiosis of intestinal microbiota due to an imbalance between harmful and beneficial bacteria and viruses. Studies have revealed the role of intestinal gut microbiota in the progression of CD. Hence, probiotics are used for the treatment of CD which are responsible for exhibiting health-promoting properties such as modulation of immune responses, inhibition of pathogenic bacteria for reducing inflammation in Crohn’s disease. The aim of this chapter is to provide insights on the gut microbiota-mediated pathogenesis in CD patients. In addition, the chapter also summarizes studies revealing potential role of probiotics, prebiotics, and fecal microbiota transplantation (FMT) approach for the treatment of CD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenis A, Colombel JF, Lecouffe P et al (1992) Increased pulmonary and intestinal permeability in Crohn’s disease. Gut 3:678–682

    Article  Google Scholar 

  • Backhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:852

    Article  CAS  Google Scholar 

  • Barnes JL, Hartmann B, Holst JJ et al (2012) Intestinal adaptation is stimulated by partial enteral nutrition supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet model. JPEN J Parenter Enteral Nutr 36(5):524–537

    Article  CAS  Google Scholar 

  • Barr J, Auro R, Furlan M et al (2013) Bacteriophage adhered to mucus provide a novel mucosal immune system. J Immunol 190(61):8

    Google Scholar 

  • Baumgart M, Dogan B, Rishniw M et al (2007) Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 1(5):403–418

    Article  CAS  Google Scholar 

  • Benchimol EI, Guttmann A, Griffiths AM et al (2009) Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut 58:1490–1497

    Article  CAS  Google Scholar 

  • Benjamin JL, Hedin CR, Koutsoumpas A et al (2011) Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut 60(7):923–929

    Article  CAS  Google Scholar 

  • Borody TJ, George L, Andrews P et al (1989) Bowel flora alteration: a potential cure for inflammatory bowel disease and irritable bowel syndrome? Med J Aust 150:604

    Article  CAS  Google Scholar 

  • Cadwell K, Patel KK, Maloney NS et al (2010) Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–1145

    Article  CAS  Google Scholar 

  • Chassaing B, Darfeuille-Michaud A (2011) The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1720–1728

    Article  Google Scholar 

  • Chen N, Zhou M, Dong X (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395:507–513

    Article  CAS  Google Scholar 

  • Conte MP, Schippa S, Zamboni I et al (2006) Gut associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55:1760–1767

    Article  CAS  Google Scholar 

  • Cui B, Feng Q, Wang H et al (2015) Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. J Gastroenterol Hepatol 30:51–58

    Article  CAS  Google Scholar 

  • Damman CJ, Miller SI, Surawicz CM et al (2012) The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol 107:1452–1459

    Article  Google Scholar 

  • Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P et al (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 115:1405–1413

    Article  CAS  Google Scholar 

  • Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C et al (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127:412–421

    Article  Google Scholar 

  • Dave M, Higgins PD, Middha S et al (2012) The human gut microbiome: current knowledge, challenges, and future directions. Transl Res 160:246–257

    Article  CAS  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Article  Google Scholar 

  • Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108:4554–4561

    Article  CAS  Google Scholar 

  • Dicksved J, Halfvarson J, Rosenquist M et al (2008) Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J 2:716–727

    Article  CAS  Google Scholar 

  • Dwivedi M, Kumar P, Laddha NC (2016) Induction of regulatory T cells: a role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev 15(4):379–392

    Article  CAS  Google Scholar 

  • El Kaoutari A, Armougom F, Gordon JI et al (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504

    Article  Google Scholar 

  • El-Gabalawy H, Guenther LC, Bernstein CN (2010) Epidemiology of immune-mediated inflammatory diseases: incidence, prevalence, natural history, and comorbidities. J Rheumatol Suppl 85:2–10

    Article  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785

    Article  CAS  Google Scholar 

  • Fujimori S, Tatsuguchi A, Gudis K et al (2007) High dose probiotic and prebiotic cotherapy for remission induction of active Crohn’s disease. J Gastroenterol Hepatol 22(8):1199–1204

    Article  Google Scholar 

  • Gevers D, Kugathasan S, Denson LA et al (2014) The treatment-naive microbiome innew-onset Crohn’s disease. Cell Host Microbe 15(3):382–392

    Article  CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  Google Scholar 

  • Górski A, Wazna E, Dabrowska BW, Dabrowska K, Switała-Jeleń K, Miedzybrodzki R (2006) Bacteriophage translocation. FEMS Immunol Med Microbiol 46(3):313–319

    Article  Google Scholar 

  • Guarner F (2005) The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr Opin Gastroenterol 21:414–418

    Google Scholar 

  • Gupta P, Andrew H, Kirschner BS et al (2000) Is lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open label study. J Pediatr Gastroenterol Nutr 31:453–457

    Article  CAS  Google Scholar 

  • Guslandi M, Mezzi G, Sorghi M et al (2000) Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig Dis Sci 45:1462–1464

    Article  CAS  Google Scholar 

  • Hammer T, Nielsen KR, Munkholm P et al (2016) The Faroese IBD study: incidence of inflammatory bowel diseases across 54 years of population-based data. J Crohns Colitis 10:934–942

    Article  Google Scholar 

  • Hou JK, Abraham B, El-Serag H (2011) Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 106(4):563–573

    Article  CAS  Google Scholar 

  • Huang C, Wang Y, Li X (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506

    Article  CAS  Google Scholar 

  • Jandhyala SM, Talukdar R, Subramanyam C et al (2015) Role of the normal gut microbiota. World J Gastroenterol 21:8787–8803

    Article  CAS  Google Scholar 

  • Jenkins RT, Jones DB, Goodacre RL et al (1987) Reversibility of increased intestinal permeability to 51CrEDTA in patients with gastrointestinal inflammatory diseases. Am J Gastroenterol 8:1159–1164

    Google Scholar 

  • Jones GR, Lyons M, Plevris N (2019) IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut 68:1953–1960

    Article  Google Scholar 

  • Kaplan GG (2015) The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 12:720–727

    Article  Google Scholar 

  • Karadsheh Z, Sule S (2013) Fecal transplantation for the treatment of recurrent clostridium difficile infection. N Am J Med Sci 5:339–343

    Article  Google Scholar 

  • Kernbauer E, Ding Y, Cadwell K (2014) An enteric virus can replace the beneficial function of commensal bacteria. Nature 516:94–98

    Article  CAS  Google Scholar 

  • Kirchgesner J, Lemaitre M, Carrat F et al (2018) Risk of serious and opportunistic infections associated with treatment of inflammatory bowel diseases. Gastroenterology 155:337–346

    Article  Google Scholar 

  • Kirchhelle A, Frühwein N, Tobüren D (1996) Treatment of persistent diarrhea with S. boulardii in returning travelers: results of prospective study. Fortschr Med 114:136–140

    CAS  Google Scholar 

  • Koenig JE, Spor A, Scalfone N et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108:4578–4585

    Article  CAS  Google Scholar 

  • Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease current status and the future ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  Google Scholar 

  • Kotlowski R, Bernstein CN, Sepehri S et al (2007) High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 56:669–675

    Article  CAS  Google Scholar 

  • Kruis W, Schutz E, Fric P et al (1997) Double blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 11:853–858

    Article  CAS  Google Scholar 

  • Lecuit M, Eloit M (2013) The human virome: new tools and concepts. Trends Microbiol 21:510–515

    Article  CAS  Google Scholar 

  • Lepage P, Colombet J, Marteau P et al (2008) Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57:424–425

    Article  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  • Lichtenstein GR, Feagan BG, Cohen RD (2012) Serious infection and mortality in patients with Crohn's disease: more than 5 years of follow-up in the TREAT™ registry. Am J Gastroenterol 107:1409–1422

    Article  CAS  Google Scholar 

  • Lindsay JO, Whelan K, Stagg AJ et al (2006) Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut 55(3):348–355

    Article  CAS  Google Scholar 

  • Llopis M, Antolin M, Carol M et al (2009) Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflamm Bowel Dis 15:275–283

    Article  Google Scholar 

  • Lopez-Siles M, Martinez-Medina M, Busquets D et al (2014) Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int J Med Microbiol 304(3–4):464–475

    Article  Google Scholar 

  • Lupp C, Robertson ML, Wickham ME et al (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2(2):119–129

    Article  CAS  Google Scholar 

  • Maier L, Pruteanu M, Kuhn M et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628

    Article  CAS  Google Scholar 

  • Manichanh C, Rigottier-Gois L, Bonnaud E et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211

    Article  CAS  Google Scholar 

  • Mao Y, Nobaek S, Kasravi B et al (1996) The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111:334–344

    Article  CAS  Google Scholar 

  • Martin HM, Campbell BJ, Hart CA et al (2004) Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 127:80–93

    Article  CAS  Google Scholar 

  • Martinez-Medina M, Aldeguer X, Gonzalez-Huix F et al (2006) Abnormal microbiota composition in the ileocolonic mucosa of Crohn’s disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12:1136–1145

    Article  Google Scholar 

  • Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  CAS  Google Scholar 

  • McFarland LV, Surawicz CM, Greenberg RN et al (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271:1913–1918

    Article  CAS  Google Scholar 

  • Minot S, Grunberg S, Wu GD et al (2012) Hypervariable loci in the human gut virome. Proc Natl Acad Sci U S A 109:3962–3966

    Article  CAS  Google Scholar 

  • Molodecky NA, Soon IS, Rabi DM et al (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142:46–54

    Article  Google Scholar 

  • Mondot S, Kang S, Furet JP et al (2011) Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 17:185–192

    Article  CAS  Google Scholar 

  • Morgan XC, Tickle TL, Sokol H et al (2012) Dysfunction of the intestinal microbiome ininflammatory bowel disease and treatment. Genome Biol 13(9):R79

    Article  CAS  Google Scholar 

  • Mylonaki M, Rayment NB, Rampton DS et al (2005) Molecular characterization of rectal mucosa associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 11:481–487

    Article  Google Scholar 

  • Neut C, Bulois P, Desreumaux P et al (2002) Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn’s disease. Am J Gastroenterol 97:939–946

    Article  Google Scholar 

  • Ng SC, Shi HY, Hamidi N et al (2017) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390(10114):2769–2778

    Article  Google Scholar 

  • Norman JM, Handley SA, Baldridge MT et al (2015) Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160(3):447–460

    Article  CAS  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  Google Scholar 

  • Ogilvie LA, Jones BV (2015) The human gut virome: a multifaceted majority. Front Microbiol 6:918

    Article  Google Scholar 

  • Ott SJ, Musfeldt M, Wenderoth DF et al (2004) Reduction in diversityof the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693

    Article  CAS  Google Scholar 

  • Pérez-Brocal V, García-López R, Nos P, Beltrán B, Moret I, Moya A (2015) Metagenomic analysis of crohn’s disease patients identifies changes in the virome and microbiome related to disease status and therapy, and detects potential interactions and biomarkers. Inflamm Bowel Dis 21(11):2515–2532

    Article  Google Scholar 

  • Perry T, Jovel J, Patterson J et al (2015) Fecal microbial transplant after ileocolic resectionreduces ileitis but restores colitis in IL-10−/− mice. Inflamm Bowel Dis 21(7):1479–1490

    Article  Google Scholar 

  • Pironi L, Miglioli M, Ruggeri E et al (1990) Relationship between intestinal permeability to [51Cr] EDTA and inflammatory activity in asymptomatic patients with Crohn’s disease. Dig Dis Sci 3:582–588

    Article  Google Scholar 

  • Png CW, Lindén SK, Gilshenan KS et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augmentin vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428

    Article  CAS  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalog established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  Google Scholar 

  • Rembacken BJ, Snelling AM, Hawkey PM et al (1999) Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomized trial. Lancet 354:635–639

    Article  CAS  Google Scholar 

  • Reyes A, Haynes M, Hanson N et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338

    Article  CAS  Google Scholar 

  • Rocchi A, Benchimol EI, Bernstein CN et al (2012) Inflammatory bowel disease: a Canadian burden of illness review. Can J Gastroenterol 26:811–817

    Article  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  Google Scholar 

  • Sanderson IR, Boulton P, Menzies I et al (1987) Improvement of abnormal lactulose/rhamnose permeability in active Crohn’s disease of the small bowel by an elemental diet. Gut 2:1073–1076

    Article  Google Scholar 

  • Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134(2):577–594

    Article  CAS  Google Scholar 

  • Sepehri S, Kotlowski R, Bernstein CN, Krause DO (2007) Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis 13:675–683

    Article  Google Scholar 

  • Shanahan F (2004) Probiotics in inflammatory bowel disease—therapeutic rationale and role. Adv Drug Deliv Rev 56:809–818

    Article  CAS  Google Scholar 

  • Sokol H, Lay C, Seksik P et al (2008a) Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis 14:858–867

    Article  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L et al (2008b) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

    Article  CAS  Google Scholar 

  • Steed H, Macfarlane GT, Blackett KL et al (2010) Clinical trial: the microbiological and immunological effects of synbiotic consumption: a randomized double-blind placebo-controlled study in active Crohn’s disease. Aliment Pharmacol Ther 32(7):872–883

    Article  CAS  Google Scholar 

  • Suskind DL, Brittnacher MJ, Wahbeh G et al (2015) Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s disease. Inflamm Bowel Dis 21:556–563

    Article  Google Scholar 

  • Swidsinski A, Ladhoff A, Pernthaler A et al (2002) Mucosal flora in inflammatory boweldisease. Gastroenterology 122:44–54

    Article  Google Scholar 

  • Swidsinski A, Loening-Baucke V, Herber A (2009) Mucosal flora in Crohn’s disease and ulcerative colitis: an overview. J Physiol Pharmacol 60:61–71

    Google Scholar 

  • Thia K, Sandborn W, Harmsen W et al (2010) Risk factors associated with progression to intestinal complications of Crohn’s disease in a population-based cohort. Gastroenterology 139:1147–1155

    Article  Google Scholar 

  • Uhr JW, Dancis J, Franklin EC, Finkelstein MS, Lewis EW (1962) The antibody response to bacteriophage phi-X 174 in newborn premature infants. J Clin Invest 41:1509–1513

    Article  CAS  Google Scholar 

  • Vaughn BP, Vatanen T, Allegretti JR et al (2016) Increased intestinal microbial diversity following fecal microbiota transplant for active crohn’s disease. Inflamm Bowel Dis 22:2182–2190

    Article  Google Scholar 

  • Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157:142–150

    Article  CAS  Google Scholar 

  • Wagner J, Maksimovic J, Farries G et al (2013) Bacteriophages in gut samples from pediatric Crohn’s disease patients: metagenomic analysis using 454 pyrosequencing. Inflamm Bowel Dis 19:1598–1608

    Article  Google Scholar 

  • Waller AS, Yamada T, Kristensen DM et al (2014) Classification and quantification of bacteriophage taxa inhuman gut metagenomes. ISME J 8:1391–1402

    Article  CAS  Google Scholar 

  • Willing BP, Dicksved J, Halfvarson J et al (2010) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139(6):1844–54.e1

    Article  Google Scholar 

  • Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  Google Scholar 

  • Wyatt J, Oberhuber G, Pongratz S et al (1997) Increased gastric and intestinal permeability in patients with Crohn’s disease. Am J Gastroenterol 9:1891–1896

    Google Scholar 

  • Yang YJ, Kim MS, Kim E et al (2016) Enteric viruses ameliorate gut inflammation via toll-like receptor 3 and toll like receptor 7-mediated interferon-b production. Immunity 44:889–900

    Article  CAS  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    Article  CAS  Google Scholar 

  • Zhang FM, Wang HG, Wang M et al (2013) Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn’s disease. World J Gastroenterol 19:7213–7216

    Article  Google Scholar 

  • Zuo T, Kamm MA, Colombel JF et al (2018) Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 15:440–452

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Uka Tarsadia University, Maliba Campus, Tarsadi, Gujarat, India for providing the facilities needed for the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, F., Dwivedi, M.K. (2022). Microorganisms in the Pathogenesis and Management of Crohn’s Disease (CD). In: Dwivedi, M.K., Sankaranarayanan, A., Kemp, E.H., Shoenfeld, Y. (eds) Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-4800-8_13

Download citation

Publish with us

Policies and ethics