Skip to main content

Solar Selective Absorbers Based on Semiconducting Thin Films

  • Chapter
  • First Online:
CO2 Free Ammonia as an Energy Carrier

Abstract

In order to produce CO2 free hydrogen using thermal energy at high temperatures, concentrated solar power systems are one of the most promising candidates. For mass production of hydrogen, linear focusing systems consisting of parabolic trough mirrors are suitable because of the high scalability of the power plant capacity. Although most of the conventional linear focusing systems have been operated under 400 °C, higher temperatures are desirable for more efficient solar-thermal energy conversion and hence for lower cost of hydrogen production. A key component in the linear focusing systems is solar receiver tubes with “solar selective absorbers” by which concentrated solar radiation is absorbed and thermal infrared radiation is inhibited at the operating high temperatures. This chapter introduces novel solar selective absorbers for efficient and durable solar-thermal energy conversion operating at 650 °C. The solar absorptance has been enhanced by band-edge absorption of semiconducting β-FeSi2, and the infrared emissivity at high temperatures has been reduced by thermally stabilized silver (Ag). The optimally designed multilayers achieved the averaged solar-thermal conversion efficiency of 87% between 300 and 650 °C, and ensured superior thermal durability over 25 years under high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seraphin BO (1979) Solar energy conversion: solid state physics aspects. Springer, Berlin

    Book  Google Scholar 

  2. Islam MT, Huda N, Abdullah AB, Saidurcd R (2018) A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. Renew Sustain Energy Rev 91:987–1018

    Article  Google Scholar 

  3. Myagmarjava O, Iwatsuki J, Tanaka N, Noguchi H (2019) Research and development on membrane IS process for hydrogen production using solar heat. Int J Hydrogen Energy 44(35):19141–19152

    Article  Google Scholar 

  4. Price H, Lüpfert E, Kearney D, Zarza E, Cohen G, Mahoney R (2002) Advances in parabolic trough solar power technology. J Sol Energy Eng 124:109–125

    Article  Google Scholar 

  5. Giaconia A, Iaquaniello G, Metwally AA, Caputo G, Balog I (2020) Experimental demonstration and analysis of a CSP plant with molten salt heat transfer fluid in parabolic troughs. Sol Energy 211(15):622–632

    Article  Google Scholar 

  6. Kennedy CE (2002) Review of mid- to high- temperature solar selective absorber materials. NREL/TP-520–31267 Golden CO 2002

    Google Scholar 

  7. Selvakumar N, Barshilia HC (2012) Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar Energy Mater Solar Cells 98:1–23

    Article  CAS  Google Scholar 

  8. Carlo R, Alessandro A (2004) Surface coating of the collector tube of a linear parabolic solar concentrator. European Patent EP1397622B1, 1 Dec 2004

    Google Scholar 

  9. Esposito S, Antonaia A, Addonizio ML, Aprea S (2009) Fabrication and optimization of highly efficient cermet-based spectrally selective coatings for high operating temperature. Thin Solid Films 517:6000–6006

    Article  CAS  Google Scholar 

  10. Antonaia A, Addonizio ML, Esposito S, Ferrara M, Castaldo A, Guglielmo A, D’Angelo A (2014) Adhesion and structural stability enhancement for Ag layers deposited on steel in selective solar coatings technology. Surf Coat Technol 225(25):96–101

    Article  Google Scholar 

  11. Antonaia A, D’Angelo A, Esposito S, Addonizio ML, Castaldo A, Ferrara M, Guglielmo A, Maccari A (2016) Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C. AIP conf proc 1734(030003):1–8

    Google Scholar 

  12. Seraphin BO (1976) Chemical vapour deposition of semiconductor films for solar energy conversion. Thin Solid Films 39:87–94

    Article  CAS  Google Scholar 

  13. Seraphin BO (1979) Chemical vapour deposition of spectrally selective surfaces for high temperature photothemal conversion. Thin Solid Films 57:293–297

    Article  CAS  Google Scholar 

  14. Okuhara Y, Kuroyama T, Takata M, Tsutsui T, Noritake K (2018) Solar selective absorbers based on semiconducting β-FeSi2 for high temperature solar-thermal conversion. AIP conf proc 2033(220005):1–8

    Google Scholar 

  15. Okuhara Y, Kuroyama T, Yokoe D, Kato T, Takata M, Tsutsui T, Noritake K (2019) Solar selective absorbers consisting of semiconducting silicide absorbing layers with thermally stabilized Ag base. AIP Conf Proc 2126(120013):1–8

    Google Scholar 

  16. Okuhara Y, Yokoe D, Kato T, Suda S, Takata M, Noritake K, Sato A (2017) Solar-selective absorbers based on semiconducting β-FeSi2 for efficient photothermal conversion at high temperature. Solar Energy Mater Solar Cells 161:240–246

    Article  CAS  Google Scholar 

  17. Okuhara Y, Kuroyama T, Yokoe D, Kato T, Takata M, Tsutsui T, Noritake K (2018) High-temperature solar-thermal conversion by semiconducting β-FeSi2 absorbers with thermally stabilized silver layers. Solar Energy Mater Solar Cells 174:351–358

    Article  CAS  Google Scholar 

  18. Okuhara Y, Kuroyama T, Yokoe D, Kato T, Takata M, Tsutsui T, Noritake K (2020) Thermal durability of solar selective absorbers consisting of β-FeSi2 with low emissive Ag layers on stainless steel. Solar Energy Mater Solar Cells 206(11304):1–8

    Google Scholar 

  19. Sugawara K, Kawamura M, Abe Y, Sasaki K (2007) Comparison of the agglomeration behavior of Ag(Al) films and Ag(Au) films. Microelectron Eng 84(11):2476–2480

    Article  CAS  Google Scholar 

  20. Minamide Y, Kawamura M, Abe Y, Sasaki K (2009) Agglomeration suppression behavior and mechanisms of Ag–Cu and Ag–Nb thin films. Vacuum 84(5):657–662

    Article  CAS  Google Scholar 

  21. Kim HC, Alford TL (2003) Improvement of the thermal stability of silver metallization. J Appl Phys 94(8):5393–5395

    Article  CAS  Google Scholar 

  22. Glickman EE, Bogush V, Inberg A, Diamand YS, Croitoru N (2003) Electrical resistivity of thin electroless Ag–W films for metallization. Microelectron Eng 70(2–4):495–500

    Article  CAS  Google Scholar 

  23. Mardani S, Primetzhofer D, Liljeholm L, Vallin Ö, Norstöm H (2014) Electrical properties of Ag/Ta and Ag/TaN thin films. Microelectron Eng 120:257–261

    Article  CAS  Google Scholar 

  24. Harding GL (1978) Sputtered metal silicide solar selective absorbing surfaces. J Vac Sci Technol 15(1):65–69

    Article  CAS  Google Scholar 

  25. Borisenko VB (2000) Semiconductor silicides. Springer, Berlin

    Book  Google Scholar 

  26. Bost MC, Mahan JE (1985) Optical properties of semiconducting iron disilicide thin films. J Appl Phys 58(7):2696–2703

    Article  CAS  Google Scholar 

  27. Bost MC, Mahan JE (1988) A clarification of the index of refraction of beta-ion disilliside. J Appl Phys 64(4):2034–2037

    Article  CAS  Google Scholar 

  28. Christensen NE (1990) Electric structure of β-FeSi2. Phys Rev B 42(11):7148–7153

    Article  CAS  Google Scholar 

  29. Dimitriadis CA, Werner JH, Logothetidis S, Stutzmann M, Weber J, Nesper R (1990) Electronic properties of semiconducting FeSi2 films. J Appl Phys 68(4):1726–1734

    Article  CAS  Google Scholar 

  30. Mckinty CN, Kewell AK, Sharpe JS, Lourenco MA, Butler TM, Valizadeh R, Colligon JS, Reeson Kirkby KJ, Homewood KP (2000) The optical properties of β-FeSi2 fabricated by ion beam assisted sputtering. Nucl Instr Meth B 161-163:922–925

    Google Scholar 

  31. Yang Z, Homewood KP, Finney MS, Harry MA, Reeson KJ (1995) Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J Appl Phys 78(3):1958–1963

    Article  CAS  Google Scholar 

  32. Hoex B, Peeters FJJ, Creatore M, Blauw MA, Kessels WMM, Sanden MCM (2006) High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon. J Vac Sci Technol A 24(5):1823–1830

    Article  CAS  Google Scholar 

  33. Nicolet MA (1978) Diffusion barriers in thin films. Thin Solid Films 52:415–443

    Article  CAS  Google Scholar 

  34. Wittmer M (1984) Barrier layers: principles and applications in microelectronics. J Vac Sci Technol A 2(2):273–280

    Article  CAS  Google Scholar 

  35. Tsai MH, Sun SC, Tsai CE, Chuang SH, Chui HT (1996) Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si. J Appl Phys 79(9):6932–6938

    Article  CAS  Google Scholar 

  36. Mehrotra B, Stimmell J (1987) Properties of direct current magnetron reactively sputtered TaN. J Vac Sci Technol B 5(6):1736–1740

    Article  CAS  Google Scholar 

  37. Panknin D, Wieser SEW, Henrion W, Lange H (1996) Buried (Fe1-xCox)Si layers with variable band gap formed by ion beam synthesis. Appl Phys A 62:155–162

    Google Scholar 

  38. Dalapati GK, Liew SL, Wong ASW, Chai Y, Chiam SY, Chi DZ (2011) Photovoltaic characteristics of β-FeSi2(Al)/n-Si(100) heterojunction solar cells and the effects of interfacial engineering. Appl Phys Lett 98(013507):1–3

    Google Scholar 

  39. Kishimoto K, Nagatomo Y, Miki T, Koyanagi T (2002) Microstructure and thermoelectric properties of Cr-doped β-FeSi2 sintered with micrograins treated in radio frequency plasmas of SiH4 and GeH4 gases. J Appl Phys 92(8):4393–4401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Council for Science, Technology and Innovation (CSTI), the Cross-ministerial Strategic Innovation Promotion Program (SIP), “Energy carrier” (Funding agency: Japan Science and Technology Agency (JST)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Okuhara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okuhara, Y., Takata, M., Tsutsui, T., Noritake, K. (2023). Solar Selective Absorbers Based on Semiconducting Thin Films. In: Aika, Ki., Kobayashi, H. (eds) CO2 Free Ammonia as an Energy Carrier. Springer, Singapore. https://doi.org/10.1007/978-981-19-4767-4_6

Download citation

Publish with us

Policies and ethics