Skip to main content

Advances in High Temperature Electrolysis Using Solid Oxide Electrolysis Cells

  • Chapter
  • First Online:
CO2 Free Ammonia as an Energy Carrier
  • 1498 Accesses

Abstract

Hydrogen is the most attractive regenerative energy media and can be used for fuel cells, direct combustion, and so on. One of the key technologies for the hydrogen energy system is the production of large amounts of hydrogen with high efficiency. At present steam reforming reaction (SRR) of hydrocarbons is used worldwide, however, water electrolysis from renewable energies will be developed and used near future from the viewpoint of reducing greenhouse effects as well as saving fossil fuels. Here, several kinds of water electrolysis technologies are reviewed and finally high temperature electrolysis using solid oxide is shown in detail. Alkali electrolysis (AE), solid polymer electrolysis (SPE), and high temperature electrolysis (HTE) of water vapor are illustrated first in view of thermodynamics then of practical technology. As for the THE advanced technologies are illustrated from the standpoint of cell material (cathode, anode, and interconnector/separator) design and stack structure design. Lastly, Toshiba Energy Systems & Solutions Corp., 10 kW-class test system installed multiple SOEC stacks for hydrogen production recently developed are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tamura H, Uchida H, Ikeda H, Iwakura C, Takasu Y (2003) Functional chemical series for electricity and ions 4

    Google Scholar 

  2. Technical development and strengthening of hydrogen energy storage and utilization; Fukushima-NEDO hydrogen system program (in Japanese), https://www.asahi-kasei.com/jp/news/2020/ze200915.html Accessed 1 Sep 2022

  3. Water electrolysers / hydrogen generators, https://nelhydrogen.com/ Accessed 1 Sep 2022

  4. Spacil H, Tedmon C (1969) Electrochemical dissociation of water vapor in solid oxide electrolyte cells: I . thermodynamics and cell characteristics. J Electrochem Soc 116:1618

    Google Scholar 

  5. Spacil H, Tedmon C (1969) Electrochemical dissociation of water vapor in solid oxide electrolyte cells: II. Materials, fabrication, and properties. J Electrochem Soc 116:1627

    Google Scholar 

  6. Badwal S, Bevan D, Bockris J (1980) The electrode kinetics of the evolution and dissolution of oxygen at the urania-zirconia interfaces. J Electrochim Acta 25:1115

    Google Scholar 

  7. Pound B, Bevan D, Bockris J (1981) The electrolysis of steam using uranium oxide electrodes. Int J Hydrogen Energy 6:473

    Article  CAS  Google Scholar 

  8. Accorsi R (1982) Hydrogen production by high temperature electrolysis of steam. EUR Rep Commun EUR 8054:367

    Google Scholar 

  9. Olmer L, Viguie J, Schouler E (1982) An increase in the water vapor reduction rate by using an yttria-stabilized zirconia electrolyte with ceria-doped surface. Solid State Ionics 7:23

    Article  CAS  Google Scholar 

  10. Barbi G, Mari C (1985) High temperature electrochemical reduction of the water molecule at cerium dioxide electrodes. Solid State Ionics 15:335

    Article  CAS  Google Scholar 

  11. McElroy J (1983) Status of the development of solid polymer electrolyte water electrolysis for large scale hydrogen generation. US DOE Rep CONF 830974:127

    Google Scholar 

  12. Salzano F, Skaperdas G, Mezzina A (1985) Water vapor electrolysis at high temperature: systems considerations and benefits. Int J Hydrogen Energy 10:801

    Article  CAS  Google Scholar 

  13. Liepa M, Borhan A (1986) High-temperature steam electrolysis: Technical and economic evaluation of alternative process designs. Int J Hydrogen Energy 11:435

    Article  CAS  Google Scholar 

  14. Perfiliev M (1994) Problems of high-temperature electrolysis of water vapour. Int J Hydrogen Energy 19:227

    Article  CAS  Google Scholar 

  15. Doenitz W, Schmidberger R, Steinheil E, Streicher R (1980) Hydrogen production by high temperature electrolysis of water vapour. Int J Hydrogen Energy 5:55

    Article  CAS  Google Scholar 

  16. Doenitz W, Schmidberger R (1982) Concepts and design for scaling up high temperature water vapour electrolysis. Int J Hydrogen Energy 7:321

    Article  CAS  Google Scholar 

  17. Dietrich G, Schafer W (1984) Advances in the development of thin-film cells for high temperature electrolysis. Int J Hydrogen Energy 9:747

    Article  CAS  Google Scholar 

  18. Doenitz W, Erdle E (1985) High-temperature electrolysis of water vapor—status of development and perspectives for application. Int J Hydrogen Energy 10:291

    Article  CAS  Google Scholar 

  19. Doenitz W, Schmidberger R (1988) Electrochemical high temperature technology for hydrogen production or direct electricity generation. J Hydrogen Energy 13:283

    Article  CAS  Google Scholar 

  20. Erdle E, Donitz W, Schamn R, Koch A (1992) Reversibility and polarization behavior of high temperature solid oxide electrochemical cells. Int J Hydrogen Energy 17:817

    Article  CAS  Google Scholar 

  21. Dietrich G, Schafer W (1982) A preparation technique of thin-film ZrO2-Y2O3 solid electrolyte on porous support structures for high temperature electrolysis application. Hydrogen Energy Progress-IV:419

    Google Scholar 

  22. Dietrich G, Schafer W, Doenitz W (1983) Development of thin film cells for high temperature electrolysis. Hydrogen Energy Carrier 237

    Google Scholar 

  23. Dietrich G, Donitz W, Hermeking H, Oehme G (1982) Development of a technique for thin-film preparation of ZrO2-Y2O3 solid electrolyte on porous support structures for high temperature electrolysis application EUR Rep. EUR 8054:371

    Google Scholar 

  24. Donitz W, Erdle E (1991) Electrochemical cell design and optimization procedures. Dechema-Monographs 123:21

    Google Scholar 

  25. Quantdt K, Streicher R (1986) Concept and design of a 3.5 MW pilot plant for high temperature electrolysis of water vapor. Int J Hydrogen Energy 11:309

    Google Scholar 

  26. Streicher R, Quantdt K (1984) Hydrogen Energy Progress-V:777

    Google Scholar 

  27. Maskalick N, Buzzelli E, Zuckerbrod D, MBonner M, Mezzina A, Salzano F (1984) Hydrogen production employing high temperature solid oxide cells. Proceedings of intersociety energy conversion engineering conference, vol 19, p 1415

    Google Scholar 

  28. Maskalick N (1986) High temperature electrolysis cell performance characterization. Int J Hydrogen Energy 11:563

    Article  CAS  Google Scholar 

  29. Nanjo F, Takenobu K, Watanabe K, Miyamoto H, Sumi M, Tokunaga S, Koshiro I (1993) Development of the Mitsubishi planar reversible cell. Sci Technol Zirconia V 5:705

    Google Scholar 

  30. Koshiro I, Miyamoto H, Sumi M, Mori K (1995) The improvements of the solid oxide steam electrolysis cell components. Hydrogen Energy Progress-X:695

    Google Scholar 

  31. Hino R, Aita H, Sekita K, Haga K, Iwata T (1997) Study on hydrogen production by high temperature electrolysis of steam. JAERI-Res 97–064:1

    Google Scholar 

  32. Konishi S, Ohno H, Yoshida H, Katsuta H, Naruse Y (1986) Solid oxide electrolysis cell for decomposition of tritiated water. Int J Hydrogen Energy 11:507

    Article  CAS  Google Scholar 

  33. Momma A, Kato T, Kaga Y, Nagata S (1997) Polarization behavior of high temperature solid oxide electrolysis cells. J Ceram Soc Jpn 105:369

    Article  CAS  Google Scholar 

  34. Uchida H, Osada N, Watanabe M (2004) High-performance electrode for steam electrolysis. Mixed conducting Ceria-based cathode with highly-dispersed Ni electrocatalysts. Electrochem Solid-State Lett 7:A500

    Google Scholar 

  35. Osada N, Uchida H, Watanabe M (2006) Polarization behavior of SDC cathode with highly dispersed Ni catalysts for solid oxide electrolysis cells. J Electrochem Soc 153:A816

    Article  CAS  Google Scholar 

  36. Uchida H, Nishino H, Puengjinda P, Kakinuma K (2020) Remarkably improved durability of Ni–Co dispersed Samaria-doped ceria hydrogen electrodes by reversible cycling operation of solid oxide cells. J Electrochem Soc 167:134516

    Article  CAS  Google Scholar 

  37. Uchda H, Brito M, Nishino H (2021) D epth-direction analysis of nickel depletion in a Ni­gadolinia-doped ceria hydrogen electrode after steam electrolysis operation. J Ceramic Soc Japan 129:111

    Article  Google Scholar 

  38. Hauch A, Jensen S, Ramousse S, Mogensen M (2006) Performance and durability of solid oxide electrolysis cells. J Electrochem Soc 153:A1741

    Article  CAS  Google Scholar 

  39. Hauch A, Jensen S, Ramousse S, Mogensen M (2007) Silica segregation in the Ni/YSZ electrode. J Electrochem Soc 154:A619

    Article  CAS  Google Scholar 

  40. Toshiba hydrogen energy research and development (in English), https://www.toshiba-energy.com/en/hydrogen/rd/index.htm Accessed 1 Sep 2022

  41. Inuzuka R, Kameda T, Watanabe H, Yoshino M (2015) Development of hydrogen production and power storage systems using solid oxide electrolysis cell. Fuel Cell Seminar and Energy Exposition 2015

    Google Scholar 

  42. Tagawa H (1998) Solid oxide fuel cells and global environment

    Google Scholar 

  43. Dees D, Claar T, Easler T, Fee D, Mrazek F (1987) Conductivity of Porous Ni/ZrO2-Y2O3 Cermets. J Electrochem Soc 134:2141

    Article  CAS  Google Scholar 

  44. Kawada T, Sakai N, Yokokawa H, Dokiya M, Mori M, Iwata T (1990) Characteristics of Slurry-coated nickel zirconia cermet anodes for solid oxide fuel cell. J Electrochem Soc 137:3042

    Article  CAS  Google Scholar 

  45. Iwata T (1996) Characterization of Ni-YSZ anode degradation for substrate-type solid oxide fuel cells. J Electrochem Soc 143:1521

    Article  CAS  Google Scholar 

  46. Eguchi K, Kunisa Y, Adachi K, Arai H (1996) Effect of anodic concentration overvoltage on power generation characteristics of solid oxide fuel cells. J Electrochem Soc 143:3699

    Article  CAS  Google Scholar 

  47. Sakai N, Horita T, Yokokawa H, Dokiya M, Kojima I (1993) Liquid-phase-assisted sintering of calcium-doped lanthanum chromites. J Am Ceram Soc 76:609

    Article  CAS  Google Scholar 

  48. Yasuda I, Ogiwara F, Yakabe H (2001) Proceedings of the 7th international symposium on solid oxide fuel cells (SOFC-VII): 783

    Google Scholar 

  49. Tsuchiya N, Ohmura H, Kanamura S, Yoshino M, Fujiwara S, Kameda T, Yamada M, Yamada K (2017) Demonstration of hydrogen production by multi-typed SOEC system. Proceedings of 2017 AIChE annual meeting: 221d

    Google Scholar 

  50. Tsuchiya N, Ohmura H, Yoshino M, Osada N, Fujiwara S, Kameda T, Yamada K (2019) Hydrogen production system using SOEC—evaluation of the energy by long-term operation—proceedings of 2019 AIChE annual meeting: 526i

    Google Scholar 

Download references

Acknowledgements

A part of this work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norikazu Osada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osada, N. (2023). Advances in High Temperature Electrolysis Using Solid Oxide Electrolysis Cells. In: Aika, Ki., Kobayashi, H. (eds) CO2 Free Ammonia as an Energy Carrier. Springer, Singapore. https://doi.org/10.1007/978-981-19-4767-4_10

Download citation

Publish with us

Policies and ethics