Skip to main content

Body-Centered Cubic High-Entropy Alloys

  • Chapter
  • First Online:
Advanced Multicomponent Alloys

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 980 Accesses

Abstract

Body-centered-cubic (BCC) high-entropy alloys (HEAs) composed of elements in the Ti–V–Cr–Zr–Mo–Nb–Hf–Ta–W family at near equal concentrations and the different atom types occupying the crystalline BCC lattice sites at random. These materials exhibit outstanding mechanical and physical properties at elevated temperatures, making them promising candidates for elevated-temperature applications. In this chapter, the principles for alloy design of BCC HEAs with good mechanical properties and superior wear, corrosion, and irradiation resistance are critically discussed. The microstructures, including the short-range order and intermediate and complex phases, are presented, and the mechanical properties at cryogenic, ambient, and elevated temperatures are systematically assessed. This chapter can serve as a guide for the development of advanced BCC HEAs for structural and functional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Y, Zhou YJ, Lin JP et al (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 10(6):534–538

    Article  CAS  Google Scholar 

  2. Guo S, Ng C, Lu J et al (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109(10):103505

    Article  CAS  Google Scholar 

  3. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132(2–3):233–238

    Article  CAS  Google Scholar 

  4. Chen Y, Li Y, Cheng X et al (2018) The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity. Materials 11(2):208

    Article  CAS  Google Scholar 

  5. Melnick AB, Soolshenko VK (2017) Thermodynamic design of high-entropy refractory alloys. J Alloy Compd 694:223–227

    Article  CAS  Google Scholar 

  6. Senkov ON, Miracle DB (2016) A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J Alloy Compd 658:603–607

    Article  CAS  Google Scholar 

  7. McAlpine SW, Logan JV, Short MP (2021) Predicting single phase stability and segregation in the NbMoTaTi-(W, V) high entropy alloy system with the vacancy exchange potential. Scripta Mater 191:29–33

    Article  CAS  Google Scholar 

  8. Mathiou C, Poulia A, Georgatis E et al (2018) Microstructural features and dry-Sliding wear response of MoTaNbZrTi high entropy alloy. Mater Chem Phys 210:126–135

    Article  CAS  Google Scholar 

  9. Poulia A, Georgatis E, Karantzalis A (2019) Evaluation of the microstructural aspects, mechanical properties and dry sliding wear response of MoTaNbVTi refractory high entropy alloy. Met Mater Int 25(6):1529–1540

    Article  CAS  Google Scholar 

  10. Poulia A, Georgatis E, Lekatou A et al (2016) Microstructure and wear behavior of a refractory high entropy alloy. Int J Refract Metal Hard Mater 57:50–63

    Article  CAS  Google Scholar 

  11. Pole M, Sadeghilaridjani M, Shittu J et al (2020) High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J Alloy Compd 843:156004

    Article  CAS  Google Scholar 

  12. Guo Z, Zhang A, Han J et al (2019) Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys. J Mater Sci 54(7):5844–5851

    Article  CAS  Google Scholar 

  13. Speight JG (2005) Lange’s handbook of chemistry. McGraw-hill, New York

    Google Scholar 

  14. Senkov ON, Wilks GB, Scott JM et al (2011) Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19(5):698–706

    Article  CAS  Google Scholar 

  15. Liu CM, Wang HM, Zhang SQ et al (2014) Microstructure and oxidation behavior of new refractory high entropy alloys. J Alloy Compd 583:162–169

    Article  CAS  Google Scholar 

  16. Gorr B, Mueller F, Christ HJ et al (2016) High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb20Mo20Cr20Ti20Al with and without Si addition. J Alloy Compd 688:468–477

    Article  CAS  Google Scholar 

  17. Müller F, Gorr B, Christ HJ et al (2018) Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta–Mo–Cr–Ti–Al. Mater High Temp 35(1–3):168–176

    Article  CAS  Google Scholar 

  18. Chang CH, Titus MS, Yeh JW (2018) Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv Eng Mater 20(6):1700948

    Article  CAS  Google Scholar 

  19. Lo KC, Yeh AC, Murakami H (2018) Microstructural investigation of oxidized complex refractory high entropy alloys. Mater Trans MJ201611

    Google Scholar 

  20. Fu Y, Li J, Luo H et al (2021) Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J Mater Sci Technol 80:217–233

    Article  CAS  Google Scholar 

  21. Li M, Chen Q, Cui X et al (2021) Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment. J Alloys Compd 857:158278

    Google Scholar 

  22. Zhou Q, Sheikh S, Ou P et al (2019) Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions. Electrochem Commun 98:63–68

    Google Scholar 

  23. Hua XJ, Hu P, Xing HR et al (2022) Development and property tuning of refractory high-entropy alloys: a review. Acta Metallurgica Sinica (English Letters) 1–35

    Google Scholar 

  24. Li J, Yang X, Zhu R et al (2014) Corrosion and serration behaviors of TiZr0.5NbCr0.5VxMoy high entropy alloys in aqueous environments. Metals 4(4):597–608

    Google Scholar 

  25. Stepanov ND, Shaysultanov DG, Salishchev GA et al (2015) Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett 142:153–155

    Article  CAS  Google Scholar 

  26. Zhang Y, Liu Y, Li Y et al (2016) Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater Lett 174:82–85

    Google Scholar 

  27. Tseng KK, Juan CC, Tso S et al (2018) Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf–Mo–Nb–Ta–Ti–Zr alloys. Entropy 21(1):15

    Article  CAS  Google Scholar 

  28. Zýka J, Málek J, Veselý J et al (2019) Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system. Entropy 21(2):114

    Article  CAS  Google Scholar 

  29. Huang H, Wu Y, He J et al (2017) Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater 29(30):1701678

    Article  CAS  Google Scholar 

  30. Lei Z, Liu X, Wu Y et al (2018) Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563(7732):546–550

    Article  CAS  Google Scholar 

  31. Chen SY, Tong Y, Tseng KK et al (2019) Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scripta Mater 158:50–56

    Article  CAS  Google Scholar 

  32. Tu CH, Wu SK, Lin C (2020) A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy. Intermetallics 126:106935

    Article  CAS  Google Scholar 

  33. Zherebtsov S, Yurchenko N, Panina E et al (2020) Microband-induced plasticity in a Ti-rich high-entropy alloy. J Alloy Compd 842:155868

    Article  CAS  Google Scholar 

  34. Ma Y, Wu S, Jia Y et al (2019) Hexagonal closed-packed precipitation enhancement in a NbTiHfZr refractory high-entropy alloy. Metals 9(5):485

    Article  CAS  Google Scholar 

  35. Senkov ON, Senkova SV, Miracle DB et al (2013) Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater Sci Eng, A 565:51–62

    Article  CAS  Google Scholar 

  36. Senkov ON, Senkova SV, Woodward C et al (2013) Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater 61(5):1545–1557

    Article  CAS  Google Scholar 

  37. Long Y, Liang X, Su K et al (2019) A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: microstructural evolution and mechanical properties. J Alloy Compd 780:607–617

    Article  CAS  Google Scholar 

  38. Lee K, Jung Y, Han J et al (2021) Development of precipitation-strengthened Al0.8NbTiVM (M=Co,Ni) light-weight refractory high-entropy alloys. Materials 14(8):2085

    Google Scholar 

  39. Liu XW, Bai ZC, Ding XF et al (2021) A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability. Mater Lett 287:129255

    Article  CAS  Google Scholar 

  40. Pang J, Zhang H, Zhang L et al (2021) Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater Lett 290:129428

    Google Scholar 

  41. Wang W, Zhang Z, Niu J et al (2018) Effect of Al addition on structural evolution and mechanical properties of the AlxHfNbTiZr high-entropy alloys. Mater Today Commun 16:242–249

    Article  CAS  Google Scholar 

  42. Guo NN, Wang L, Luo LS et al (2016) Effect of composing element on microstructure and mechanical properties in Mo–Nb–Hf–Zr–Ti multi-principle component alloys. Intermetallics 69:13–20

    Article  CAS  Google Scholar 

  43. Senkov ON, Senkova SV, Dimiduk DM et al (2012) Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci 47(18):6522–6534

    Google Scholar 

  44. Butler TM, Chaput KJ, Dietrich JR et al (2017) High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J Alloy Compd 729:1004–1019

    Article  CAS  Google Scholar 

  45. Senkov ON, Jensen JK, Pilchak AL et al (2018) Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater & Design 139:498–511

    Google Scholar 

  46. Yurchenko NY, Stepanov ND, Zherebtsov SV et al (2017) Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater Sci Eng: A 704:82–90

    Google Scholar 

  47. Senkov ON, Woodward C, Miracle DB (2014) Microstructure and properties of aluminum-containing refractory high-entropy alloys. Jom 66(10):2030–2042

    Article  CAS  Google Scholar 

  48. Senkov ON, Senkova SV, Woodward C (2014) Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater 68:214–228

    Article  CAS  Google Scholar 

  49. Nagase T, Anada S, Rack PD et al (2012) Electron-irradiation-induced structural change in Zr–Hf–Nb alloy. Intermetallics 26:122–130

    Article  CAS  Google Scholar 

  50. Nagase T, Rack PD, Noh JH et al (2015) In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 59:32–42

    Article  CAS  Google Scholar 

  51. Kumar NAPK, Li C, Leonard KJ et al (2016) Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater 113:230–244

    Article  CAS  Google Scholar 

  52. Lu Y, Huang H, Gao X et al (2019) A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Technol 35(3):369–373

    Google Scholar 

  53. El-Atwani O, Li N, Li M et al (2019) Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv 5(3):eaav2002

    Google Scholar 

  54. Sadeghilaridjani M, Ayyagari A, Muskeri S et al (2020) Ion irradiation response and mechanical behavior of reduced activity high entropy alloy. J Nucl Mater 529:151955

    Article  CAS  Google Scholar 

  55. Zhao S (2020) Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure. J Mater Sci Technol 44:133–139

    Article  Google Scholar 

  56. Tong Y, Velisa G, Zhao S et al (2018) Evolution of local lattice distortion under irradiation in medium-and high-entropy alloys. Materialia 2:73–81

    Article  Google Scholar 

  57. Lu C, Niu L, Chen N et al (2016) Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun 7(1):1–8

    Google Scholar 

  58. Egami T, Guo W, Rack PD et al (2014) Irradiation resistance of multicomponent alloys. Metall and Mater Trans A 45(1):180–183

    Article  CAS  Google Scholar 

  59. Xia S, Zhen W, Yang T et al (2015) Irradiation behavior in high entropy alloys. J Iron Steel Res Int 22(10):879–884

    Article  Google Scholar 

  60. Wu Y, Zhang F, Yuan X et al (2021) Short-range ordering and its effects on mechanical properties of high-entropy alloys. J Mater Sci Technol 62:214–220

    Article  CAS  Google Scholar 

  61. George EP, Raabe D, Ritchie RO (2019) High-entropy alloys. Nat Rev Mater 4(8):515–534

    Article  CAS  Google Scholar 

  62. Yao HW, Qiao JW, Gao MC, Hawk JA, Ma SG, Zhou HF, Zhang Y (2016) NbTaV-(Ti, W) refractory high-entropy alloys: experiments and modeling. Mater Sci Eng, A 674:203–211

    Article  CAS  Google Scholar 

  63. Lin C-M, Juan C-C, Chang C-H, Tsai C-W, Yeh J-W (2015) Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J Alloy Compd 624:100–107

    Article  CAS  Google Scholar 

  64. Tang Z, Gao MC, Diao H, Yang T, Liu J, Zuo T, Zhang Y, Lu Z, Cheng Y, Zhang Y, Dahmen KA, Liaw PK, Egami T (2013) Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65(12):1848–1858

    Article  CAS  Google Scholar 

  65. Zhang C, Zhang F, Chen S, Cao W (2012) Computational thermodynamics aided high-entropy alloy design. JOM 64(7):839–845

    Article  CAS  Google Scholar 

  66. Wang Z, Wu H, Wu Y, Huang H, Zhu X, Zhang Y, Zhu H, Yuan X, Chen Q, Wang S, Liu X, Wang H, Jiang S, Kim MJ, Lu Z (2022) Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater Today

    Google Scholar 

  67. Pang J, Zhang H, Zhang L, Zhu Z, Fu H, Li H, Wang A, Li Z, Zhang H (2020) Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping. J Mater Sci Technol

    Google Scholar 

  68. Ahmad AS, Su Y, Liu SY, Ståhl K, Wu YD, Hui XD, Ruett U, Gutowski O, Glazyrin K, Liermann HP, Franz H, Wang H, Wang XD, Cao QP, Zhang DX, Jiang JZ (2017) Structural stability of high entropy alloys under pressure and temperature. J Appl Phys 121(23):235901

    Article  CAS  Google Scholar 

  69. Yusenko KV, Riva S, Crichton WA, Spektor K, Bykova E, Pakhomova A, Tudball A, Kupenko I, Rohrbach A, Klemme S, Mazzali F, Margadonna S, Lavery NP, Brown SGR (2018) High-pressure high-temperature tailoring of high entropy alloys for extreme environments. J Alloy Compd 738:491–500

    Article  CAS  Google Scholar 

  70. Guo J, Wang H, Rohr Fv, Wang Z, Cai S, Zhou Y, Yang K, Li A, Jiang S, Wu Q, Cava RJ, Sun L (2017) Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proceed National Acad Sci 114(50):13144–13147

    Google Scholar 

  71. Cheng B, Zhang F, Lou H, Chen X, Liaw PK, Yan J, Zeng Z, Ding Y, Zeng Q (2019) Pressure-induced phase transition in the AlCoCrFeNi high-entropy alloy. Scripta Mater 161:88–92

    Article  CAS  Google Scholar 

  72. Wang W-R, Wang W-L, Wang S-C, Tsai Y-C, Lai C-H, Yeh J-W (2012) Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26:44–51

    Article  CAS  Google Scholar 

  73. Zhang R, Zhao S, Ding J, Chong Y, Jia T, Ophus C, Asta M, Ritchie RO, Minor AM (2020) Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581(7808):283–287

    Article  CAS  Google Scholar 

  74. Dasari S, Jagetia A, Sharma A, Nartu MSKKY, Soni V, Gwalani B, Gorsse S, Banerjee R (2021) Tuning the degree of chemical ordering in the solid solution of a complex concentrated alloy and its impact on mechanical properties. Acta Materialia 212

    Google Scholar 

  75. Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S, Gu L, Wei F, Bei H, Gao Y, Wen M, Li J, Zhang Z, Zhu T, Ritchie RO, Yu Q (2019) Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574(7777):223–227

    Article  CAS  Google Scholar 

  76. Chen X, Wang Q, Cheng Z, Zhu M, Zhou H, Jiang P, Zhou L, Xue Q, Yuan F, Zhu J, Wu X, Ma E (2021) Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592(7856):712–716

    Article  CAS  Google Scholar 

  77. Bu YQ, Wu Y, Lei ZF, Yuan XY, Wu HH, Feng XB, Liu JB, Ding J, Lu Y, Wang HT, Lu ZP, Yang W (2021) Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater Today 46:28–34

    Article  CAS  Google Scholar 

  78. Du Q, Liu XJ, Fan HY, Zeng QS, Wu Y, Wang H, Chatterjee D, Ren Y, Ke YB, Voyles PM, Lu ZP, Ma E (2020) Reentrant glass transition leading to ultrastable metallic glass. Mater Today 34:66–77

    Article  CAS  Google Scholar 

  79. Zhang W, Liaw PK, Zhang Y (2018) Science and technology in high-entropy alloys. Sci China Mater 61(1):2–22

    Article  CAS  Google Scholar 

  80. Wen XC, Wu Y, Huang HL, Jiang SH, Wang H, Liu XJ, Zhang Y, Wang XZ, Lu ZP (2021) Effects of Nb on deformation-induced transformation and mechanical properties of HfNbxTa0.2TiZr high entropy alloys. Mat Sci Eng A-Struct 805

    Google Scholar 

  81. Senkov ON, Miracle DB, Chaput KJ, Couzinie J-P (2018) Development and exploration of refractory high entropy alloys—a review. J Mater Res 33(19):3092–3128

    Article  CAS  Google Scholar 

  82. Chen W, Tang QH, Wang H, Xie YC, Yan XH, Dai PQ (2018) Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy. Mater Sci Technol 34(11):1309–1315

    Article  CAS  Google Scholar 

  83. Senkov ON, Isheim D, Seidman DN, Pilchak AL (2016) Development of a refractory high entropy superalloy. Entropy 18(3):102

    Article  CAS  Google Scholar 

  84. Senkov ON, Rao S, Chaput KJ, Woodward C (2018) Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys. Acta Mater 151:201–215

    Article  CAS  Google Scholar 

  85. Soni V, Senkov ON, Gwalani B, Miracle DB, Banerjee R (2018) Microstructural design for improving ductility of an initially brittle refractory high entropy alloy. Sci Rep 8(1):8816

    Article  CAS  Google Scholar 

  86. Soni V, Gwalani B, Senkov ON, Viswanathan B, Alam T, Miracle DB, Banerjee R (2018) Phase stability as a function of temperature in a refractory high-entropy alloy. J Mater Res 33(19):3235–3246

    Article  CAS  Google Scholar 

  87. Jensen JK, Welk BA, Williams REA, Sosa JM, Huber DE, Senkov ON, Viswanathan GB, Fraser HL (2016) Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scripta Materialia 121:1–4

    Google Scholar 

  88. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12):2817–2829

    Google Scholar 

  89. Yeh SKCJW, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299

    Article  CAS  Google Scholar 

  90. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng, A 375–377:213–218

    Article  CAS  Google Scholar 

  91. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloy Compd 509(20):6043–6048

    Article  CAS  Google Scholar 

  92. Čížek J, Haušild P, Cieslar M, Melikhova O, Vlasák T, Janeček M, Král R, Harcuba P, Lukáč F, Zýka J, Málek J, Moon J, Kim HS (2018) Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. J Alloy Compd 768:924–937

    Article  CAS  Google Scholar 

  93. Senkov ON, Semiatin SL (2015) Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloy Compd 649:1110–1123

    Article  CAS  Google Scholar 

  94. Wu YD, Cai YH, Wang T, Si JJ, Zhu J, Wang YD, Hui XD (2014) A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett 130:277–280

    Article  CAS  Google Scholar 

  95. Lilensten L, Couzinié J-P, Bourgon J, Perrière L, Dirras G, Prima F, Guillot I (2016) Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett 5(2):110–116

    Article  CAS  Google Scholar 

  96. Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF (2012) Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci 47(9):4062–4074

    Article  CAS  Google Scholar 

  97. Guo NN, Wang L, Luo LS, Li XZ, Su YQ, Guo JJ, Fu HZ (2015) Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater Des 81:87–94

    Article  CAS  Google Scholar 

  98. Feng R, Feng B, Gao MC, Zhang C, Neuefeind JC, Poplawsky JD, Ren Y, An K, Widom M, Liaw PK (2021) Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv Mater e2102401

    Google Scholar 

  99. Wang S, Wu M, Shu D, Zhu G, Wang D, Sun B (2020) Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Mater 201:517–527

    Article  CAS  Google Scholar 

  100. Qiao JW, Ma SG, Huang EW, Chuang CP, Liaw PK, Zhang Y (2011) Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. Mater Sci Forum 688:419–425

    Article  CAS  Google Scholar 

  101. He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP (2014) Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater 62:105–113

    Article  CAS  Google Scholar 

  102. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18(9):1758–1765

    Article  CAS  Google Scholar 

  103. Poulia A, Georgatis E, Lekatou A, Karantzalis A (2017) Dry-sliding wear response of MoTaWNbV high entropy alloy. Adv Eng Mater 19(2):1600535

    Article  CAS  Google Scholar 

  104. Ye YX, Liu CZ, Wang H, Nieh TG (2018) Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater 147:78–89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y., Yuan, X., Wen, X., Jiao, M. (2022). Body-Centered Cubic High-Entropy Alloys. In: Jiao, Z., Yang, T. (eds) Advanced Multicomponent Alloys. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4743-8_1

Download citation

Publish with us

Policies and ethics