Skip to main content

Impact of Urban Overheating and Heat-Related Mortality in Mexico

  • Chapter
  • First Online:
Urban Overheating: Heat Mitigation and the Impact on Health

Abstract

Latin America and the Caribbean is the region with the largest population concentrated in megacities, 81% of the population live in urban areas, and by 2050 the proportion will hover at 89%. México, with its inequitable healthcare access and almost 100 million people living in 4,189 urban settlements faces a sustainable city agenda for climate action and good health and well-being. This chapter addresses morbidity and mortality pre-pandemic data related to heat-related diseases from the National Morbidity Yearbook and the National Mortality Census to identify and characterize trends by state, age, gender, and environmental conditions under the ICD-10 system. Evidence presented in a municipal case study indicates that ischemic heart disease counts for ≈33% of total deaths in the urban context, being an elderly female population above 55 years old the most vulnerable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts D, Pidcock R, Chen Y, Connors S, Tignor M (2019) 2018: global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate c. Nairobi

    Google Scholar 

  2. Reyers B, Folke C, Moore ML, Biggs R, Galaz V (2018) Social-ecological systems insights for navigating the dynamics of the anthropocene. Annu Rev Environ Resour 43:267–289

    Article  Google Scholar 

  3. Xi DDZ, Taylor SW, Woolford DG, Dean CB (2019) Statistical models of key components of wildfire risk. Annu Rev Stat Appl 6:197–222

    Article  MathSciNet  Google Scholar 

  4. Otto FEL (2017) Attribution of weather and climate events. Annu Rev Environ Resour 42:627–646

    Article  Google Scholar 

  5. Gonzalez-Trevizo ME, Martinez-Torres KE, Armendariz-Lopez JF, Santamouris M, Bojorquez-Morales G, Luna Leon A (2021) Research trends on environmental, energy and vulnerability impacts of Urban Heat Islands: an overview. Energy Build 246(111051):1–27

    Google Scholar 

  6. Santamouris M et al (2001) On the impact of urban climate on the energy consuption of building. Sol Energy 70(3):201–216

    Article  Google Scholar 

  7. Li H, Wang Z, Hong T (2021) A synthetic building operation dataset. Sci Data 8(1):1–14

    Article  Google Scholar 

  8. Kim SW, Brown RD (2021) Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew Sustain Energy Rev 148(August 2020):111256

    Google Scholar 

  9. United States Environmental Protection Agency (2021) “Heat Island.” Heat Island Impacts

    Google Scholar 

  10. Levy BS, Patz JA (2017) The impact of climate change on public health, human rights, and social justice, vol 1–5. Elsevier Inc

    Google Scholar 

  11. Vicedo-Cabrera AM et al (2021) The burden of heat-related mortality attributable to recent human-induced climate change. Nat Clim Chang 11(6):492–500

    Article  Google Scholar 

  12. Leal Filho W et al (2021) Addressing the urban heat islands effect: a cross-country assessment of the role of green infrastructure. Sustain 13(2):1–20

    Google Scholar 

  13. Pigliautile I, Pisello AL, Bou-Zeid E (2020) Humans in the city: Representing outdoor thermal comfort in urban canopy models. Renew Sustain Energy Rev 133(August):110103

    Article  Google Scholar 

  14. Martinez S, Machard A, Pellegrino A, Touili K, Servant L, Bozonnet E (2021) A practical approach to the evaluation of local urban overheating—a coastal city case-study. Energy Build. 253:111522

    Article  Google Scholar 

  15. Di Bernardino A et al (2021) Urban microclimate modelling for comfort and energy studies. In Palme M, Salvati A (eds) Urban microclimate modelling for comfort and energy studies, 1st ed., Cham

    Google Scholar 

  16. Schraufnagel DE et al (2019) Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 1: the damaging effects of air pollution. Chest 155(2):409–416

    Article  Google Scholar 

  17. Schraufnagel DE et al (2019) Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 2: air pollution and organ systems. Chest 155(2):417–426

    Article  Google Scholar 

  18. Mirzaei PA (2015) Recent challenges in modeling of urban heat island. Sustain Cities Soc 19:200–206

    Article  Google Scholar 

  19. Vidal F, Vicente R, Mendes Silva J (2019) Review of environmental and air pollution impacts on built heritage: 10 questions on corrosion and soiling effects for urban intervention. J Cult Herit 37:273–295

    Article  Google Scholar 

  20. Dugord PA, Lauf S, Schuster C, Kleinschmit B (2014) Land use patterns, temperature distribution, and potential heat stress risk—the case study berlin, Germany. Comput Environ Urban Syst 48:86–98

    Article  Google Scholar 

  21. Shahraiyni HT, Sodoudi S, El-Zafarany A, El Seoud TA, Ashraf H, Krone K (2016) A comprehensive statistical study on daytime surface urban heat island during summer in urban areas, case study: Cairo and its new towns. Remote Sens 8(8):1–20

    Google Scholar 

  22. ECLAC—United Nations (2021) Regional urban statistics: Urban and cities platform. Urban and cities platform of Latin America and the Caribbean [Online]. Available: https://plataformaurbana.cepal.org/en/regional-urban-statistics. [Accessed 01 Dec 2021]

  23. Instituto Nacional de Ecología and Instituto Nacional de Salud Publica (2006) Estudio Diagnostico sobre los efectos del cambio climático en la salud humana de la poblacion de México. Mexico

    Google Scholar 

  24. Baca-López K, Fresno C, Espinal-Enríquez J, Flores-Merino MV, Camacho-López MA, Hernández-Lemus E (2021) Metropolitan age-specific mortality trends at borough and neighborhood level: the case of Mexico City. PLoS One 16(1 January):1–26

    Google Scholar 

  25. World health organization (2016) International statistical classification of diseases and related health problems, 1st edn. WHO Press, Switzerland

    Google Scholar 

  26. Instituto Nacional de Estadística y Geografía (INEGI) (2021) Mortalidad. Registros administrativos—estadísticas vitales [Online]. Available: https://www.inegi.org.mx/programas/mortalidad/#Tabulados. [Accessed: 15 Nov 2021]

  27. Instituto Nacional de Estadística y Geografía (INEGI) (2021) SCINCE 2020. Sistema para la Consulta de Información Censal. [Online]. Available: https://gaia.inegi.org.mx/scince2020/. [Accessed: 01 Nov 2021]

  28. Gobierno de México (2021) Casos de enfermedad por mes de ocurrencia (2019). Anuario de morbilidad 1984–2019. [Online]. Available: https://epidemiologia.salud.gob.mx/anuario/html/casos_mes.html. [Accessed: 15 Nov 2021]

  29. Genossenschaft Meteotest (2020) Handbook part I: Software. Bern

    Google Scholar 

  30. Fernández Eguiarte A et al. Mapa de temperatura máxima extrema absoluta (1902-2015), Umbrales de exposición. Atlas climático de México, Unidad de Informática para las Ciencias Atmosféricas y Ambientales (UNIATMOS), Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM. [Online]. Available: http://uniatmos.atmosfera.unam.mx/ACDM/servmapas. [Accessed: 01 Dec 2021]

  31. Gonzalez-Block MA, Reyes Morales H, Cahuana-Hurtado L, Balandran A, Mendez E (2020) Mexico health system review. Health Syst Transit 22(2)

    Google Scholar 

  32. XXII Ayuntamiento de Ensenada (2017) Anuario estadistico municipal de Ensenada, Ensenada

    Google Scholar 

  33. Avdan U, Jovanovska G (2016) Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J Sensors 2016

    Google Scholar 

  34. Thermal Energy System Specialists (2021) What is TRNSYS?. [Online]. Available: http://www.trnsys.com/. [Accessed: 06 Nov 2021]

  35. Aghamohammadi N, Fong CS, Idrus MHM, Ramakreshnan L, Sulaiman NM (2021) Environmental heat-related health symptoms among community in a tropical city. Sci Total Environ 782:146611

    Article  Google Scholar 

  36. Liu X, Yue W, Yang X, Hu K, Zhang W, Huang M (2020) Mapping urban heat vulnerability of extreme heat in Hangzhou via comparing two approaches. Complexity 2020

    Google Scholar 

  37. Pyrgou A, Santamouris M (2018) Increasing probability of heat-related mortality in a mediterranean city Due to urban warming. Int J Environ Res Public Health 15(8):1–14

    Article  Google Scholar 

  38. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future köppen-geiger climate classification maps at 1-km resolution. Sci Data 5:1–12

    Article  Google Scholar 

  39. TRANE (2008) TRANE product data. Single packaged convertible gas/electric 13 SEER. [Online]. Available: http://www.climatesolutionsinc.com/wp-content/uploads/Trane-2YCC3-Brochure.pdf. [Accessed: 18 Nov 1BC]

  40. Molina MO, Sánchez E, Gutiérrez C (2020) Future heat waves over the mediterranean from an Euro-CORDEX regional climate model ensemble. Sci Rep 10(1):1–10

    Article  Google Scholar 

  41. Gobierno de México, Declaratoria de vigencia de la Norma Mexicana NMX-C-527–1-ONNCCE-2017. México: Diario Oficial de la Federación, 2017, p. 1.

    Google Scholar 

  42. United States Global Change Research Program (2021) National integrated heat health information system (NIHHIS) | U.S. climate resilience toolkit [Online]. Available: https://toolkit.climate.gov/tool/national-integrated-heat-health-information-system-nihhis. [Accessed: 28 Nov 2021]

  43. California Department of Public Health and the Centers for Disease Control’s (CDC) (2021) Tracking California information action for healthier communities. Views, maps and data [Online]. Available: https://trackingcalifornia.org/main/maps-and-data. [Accessed: 01 Nov 2021]

Download references

Acknowledgements

The time dedicated to this research was possible due to the UABC internal financing research projects, and its Library system data base, Programa para el Desarrollo Profesional Docente (PRODEP) and research activities supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) through its Sistema Nacional de Investigadores (SNI). In addition, the authors would like to gratefully acknowledge B. Eng. Randy Martinez for his valuable orientation and our undergraduate students Alina Vasquez, Linette Carrillo, Lidia Ornelas, Melissa Salgado, and Erick Sanchez for their enthusiasm and assistance with data collection details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. González-Trevizo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Trevizo, M.E., Martínez-Torres, K.E., Luna-León, A., Armendáriz-López, J.F., Sandoval-Félix, J. (2022). Impact of Urban Overheating and Heat-Related Mortality in Mexico. In: Aghamohammadi, N., Santamouris, M. (eds) Urban Overheating: Heat Mitigation and the Impact on Health. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4707-0_17

Download citation

Publish with us

Policies and ethics