Skip to main content

Computed Tomography Image Processing Methods for Lung Nodule Detection and Classification: A Review

  • Conference paper
  • First Online:
Data, Engineering and Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 907))

  • 487 Accesses

Abstract

The pulmonary nodules relate to a variety of lung irregularities that can be found in the early diagnosis of pulmonary patients. Radiologists can diagnose lung nodules by analyzing pulmonary images. The radiologists may be assisted by automatic sensing devices that identify nodules of various sizes within lung images. The identification and categorization of lung nodules on various images, such as CT images, electron microscopy, and Histopathology images, have attracted substantial mathematical, statistical, and observational study work during the past 50 years. Various methods appear to be promising suitable decision analysis systems to adequately handle the core problems in lung nodules diagnosis, such as extraction of features, nodule identification, true-negative reduction, and cancerous-noncancerous differentiation, as noted in a current remarkable and considerable improvements in machine learning for pulmonary nodules they attained across both research and commercial. The major goal of this study is to offer a complete state-of-the-art analysis of various methodologies for finding a better method for the classification of lung CT images in malignant and benign classes. An analysis of the methods of automatic detection of lung nodules is given in this paper. It implements a common framework that can be used to define and reflect current methods for the identification of lung nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chao W-J, Choi T-S (2014) Pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Comput Methods Programs Biomed 113:37–54

    Google Scholar 

  2. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115:211–252

    Article  MathSciNet  Google Scholar 

  3. Li X, Kao Y, Shen W, Li X, Xie G (2017) Lung nodule malignancy prediction using multi-task convolutional neural network. In: Proceedings of SPIE

    Google Scholar 

  4. Armato SG III, Altman MB, Wilkie J, Sone S, Li F, Doi K, Roy AS (2003) Automated lung nodule classification following automated nodule detection on CT: a serial approach. Med Phys 30:1188–1197

    Article  Google Scholar 

  5. Al-Shabi M, Lan BL, Chan WY, Ng K-H, Tan M (2019) Lung nodule classifcation using deep local-global networks. Int J Comput Assist Radiol Surgery 14:1815

    Article  Google Scholar 

  6. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hofman EA (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38:915–931

    Article  Google Scholar 

  7. Chaudhary A, Singh SS (2012) Lung cancer detection on ct images using image processing. In: International conference computing sciences. IEEE

    Google Scholar 

  8. Al-Kadi OS, Watson D (2008) Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 55(7)

    Google Scholar 

  9. Ma J, Wang Q, Ren Y, Hu H, Zhao J (2016) Automatic lung nodule classifcation with radiomics approach. In: Medical imaging 2016: PACS and imaging informatics: next generation and innovations. International Society for Optics and Photonics, p 978906

    Google Scholar 

  10. Ardila D, Kiraly AP, Bhardwaj S, Choi B, Reacher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, Naidich DP, Shetty S (2019) End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25:954–961

    Article  Google Scholar 

  11. Silveira M, Nascimento J, Marques J (2007) Automatic segmentation of the lungs using robust level sets. In: Engineering in medicine and biology society, 29th annual international conference of the IEEE, vol 1, pp 4414–4417

    Google Scholar 

  12. Chen L, Gu D, Chen Y, Shao Y, Cao X, Liu G, Gao Y, Wang Q, Shen D (2021) An artificial-intelligence lung imaging analysis system (ALIAS) for population-based nodule computing in CT scans. In Computerized medical imaging and graphics, vol 89

    Google Scholar 

  13. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25. Curran Associates Inc., pp 1097–1105

    Google Scholar 

  14. Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, Echegaray S, Rubin D, McNitt-Gray M, Lo P (2016) Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features tomography

    Google Scholar 

  15. Niranjana G, Ponnavaikko M (2017) A review on image processing methods in detecting lung cancer using CT images. In: International conference on technical advancements in computers and communications. IEEE

    Google Scholar 

  16. Katre PR, Thakare A (2017) Detection of lung cancer stages using image processing and data classification techniques. In: 2nd international conference for convergence in technology

    Google Scholar 

  17. Ren Y, Tsai M-Y, Chen L, Wang J, Li S, Liu Y, Jia X (2020) A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. Int J Comput Assist Radiol Surg 15:287–295

    Article  Google Scholar 

  18. Draelos RL, Dov D, Mazurowski MA, Lo JY, Henao R, Rubin GD, Carin L (2020) Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes. Med Image Anal

    Google Scholar 

  19. Aresta G, Araújo T, Kwok S, Chennamsetty SS, Safwan M, Alex V, Marami B, Prastawa M, Chan M, Donovan M, Fernandez G, Zeineh J, Kohl M, Walz C, Ludwig F, Braunewell S, Baust M, Vu QD, To MNN, Kim E, Kwak JT, Galal S, Sanchez-Freire V, Brancati N, Frucci M, Riccio D, Wang Y, Sun L, Ma K, Fang J, Kone I, Boulmane L, Campilho A, Eloy C, Polonia A, Aguiar P (2019) BACH: grand challenge on breast cancer histology images. Med Image Anal 56:122–139

    Google Scholar 

  20. Lakshmanaprabu SK, Mohanty SN, Shankar K, Arunkumar N, Ramirez G (2019) Optimal deep learning model for classification of lung cancer on CT images. Futur Gener Comput Syst 92:374–382

    Google Scholar 

  21. Manning DJ, Ethell SC, Donovan T (2004) Detection or decision errors? Missed lung cancer from the poster anterior chest radiograph. Br J Radiol 77(915):231–235

    Article  Google Scholar 

  22. Caruana R, Lawrence S, Giles CL (2000) Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: BT—advances in neural information processing systems 13, Papers from neural information processing systems (NIPS). Denver, CO, USA, pp 402–408

    Google Scholar 

  23. Choi W-J, Choi T-S (2012) Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Inf Sci 12:57–78

    Google Scholar 

  24. Han F, Zhang G, Wang H, Song B, Lu H, Zhao D, Zhao H, Liang (2013) A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database. In: 2013 IEEE international conference on medical imaging physics and engineering, pp 14–18

    Google Scholar 

  25. Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI (2003) Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans Med Imaging 22:10–26

    Google Scholar 

  26. Dutande P, Baid U, Talbar S (2021) LNCDS: A 2D-3D cascaded CNN approach for lung nodule classification, detection and segmentation. In: Biomedical signal processing and control, vol 67

    Google Scholar 

  27. Wang S, Zhou M, Gevaert O, Tang Z, Dong D, Liu Z, Tian J (2017) A multi-view deep convolutional neural networks for lung nodule segmentation. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1752–1755

    Google Scholar 

  28. Way TW, Hadjiiski LM, Sahiner B, Chan H-P, Cascade PN, Kazerooni EA, Bogot N, Zhou C (2006) Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Department of Radiology, University of Michigan, Ann Arbor, Michigan, p 48109

    Google Scholar 

  29. Schneider LS et al (2015) Reduced lung cancer mortality with low dose computed tomographic screening. New Engl J Med 687–696. https://doi.org/10.1056/NEJMoa1505949

  30. Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113:202–209

    Google Scholar 

  31. Jiang J, Hu YC, Liu CJ, Halpenny D, Hellmann MD, Deasy JO, Mageras G, Veeraraghavan H (2019) Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE Trans Med Imaging 38(1):134–144

    Article  Google Scholar 

  32. Amorim P, Moraes T, Silva J, Pedrini H (2018) 3D adaptive histogram equalization method for medical volumes. In: BT—Proceedings of the 13th international joint conference on computer vision, imaging and computer graphics theory and applications (VISIGRAPP 2018), vol 4. VISAPP, Funchal, Madeira, Po, pp 363–337

    Google Scholar 

  33. Gopi K, Selva Kumar J (2017) Lung tumor area recognition and classification using EK-mean clustering and SVM. In: International conference on nextgen electronic technologies. IEEE

    Google Scholar 

  34. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

    Google Scholar 

  35. Armato SGEA (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931

    Google Scholar 

  36. Buty M, Xu Z, Gao M, Bagci U, Wu A, Mollura DJ (2016) Characterization of lung nodule malignancy using hybrid shape and appearance features. In: BT—Ourselin S, Moskowitz L, Sabuncu MR, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention—MICCAI 2016. Springer International Publishing, Cham, pp 662–670

    Google Scholar 

  37. He X, Niyogi P (2003) Locality preserving projections. In: Thrun S, Saul LK, Schölkopf B (eds) Proceedings of the 16th international conference on neural information processing systems (NIPS’03). MIT Press, Cambridge, MA, USA, pp 153–160

    Google Scholar 

  38. Roy S, Ghosh P, Bandyopadhyay SK (2015) Contour extraction and segmentation of cerebral hemorrhage from MRI of brain by gamma transformation approach. In: Satapathy SC, Biswal BN, Udgata SK, Mandal JK (eds) BT—Proceedings of the 3rd international conference on frontiers of intelligent computing: theory and applications (FICTA) 2014. Springer International Publishing, Cham, pp 383–394

    Google Scholar 

  39. Shen W, Zhou M, Yang F, Yang C, Tian J (2015) Multi-scale convolutional neural networks for lung nodule classifcation. In: International conference on information processing in medical imaging. Springer, pp 588–599

    Google Scholar 

  40. Mzoughi H, Njeh I, Ben Slima M, Ben Hamida A (2018) Histogram equalization-based techniques for contrast enhancement of MRI brain Glioma tumor images: comparative study. In: 2018 4th international conference on advanced technologies for signal and image processing, pp 1–6

    Google Scholar 

  41. Sharma D, Jindal G (2011) Computer aided diagnosis system for detection of lung cancer in CT scan images. Int J Comput Electri Eng 3(5)

    Google Scholar 

  42. Kuruvilla J, Gunavathi K (2015) Lung cancer classification using fuzzy logic for CT images. Int J Med Eng Inf 7:233–249

    Google Scholar 

  43. Dhara AK, Mukhopadhyay S, Dutta A, Garg M, Khandelwal N (2016) A combination of shape and texture features for classification of pulmonary nodules in lung CT images. J Dig Imaging 29:466–475

    Google Scholar 

  44. Yutong X, Jianpeng Z, Yong X, Fulham M, Yanning Z (2018) Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inf Fusion 42:102–110

    Google Scholar 

  45. Liu H, Cao H, Song E, Ma G, Xu X, Jin R, Liu C, Hung C-C (2020) Multi-model ensemble learning architecture based on 3D CNN for lung nodule malignancy suspiciousness classification. J Dig Imaging 33:1242–1256

    Google Scholar 

  46. Cui W, Zhou Q, Zheng Z (2018) Application of a hybrid model based on a convolutional auto-encoder and convolutional neural network in object-oriented remote sensing classifcation. Algorithms

    Google Scholar 

  47. Bakr S, Gevaert O, Echegaray S, Ayers K, Zhou M, Shafiq M, Zheng H, Benson JA, Zhang W, Leung AN, Kadoch M, Hoang CD, Shrager J, Quon A, Rubin DL, Plevritis SK, Napel S (2018) Data descriptor: a radiogenomic dataset of non-small cell lung cancer. Sci Data 5:1–9. https://doi.org/10.1038/sdata.2018.202

    Article  Google Scholar 

  48. Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390–406

    Article  Google Scholar 

  49. Kubota T, Jerebko AK, Dewan M, Salganicoff M, Krishnan A (2011) Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med Image Anal 15(1):133–154

    Article  Google Scholar 

  50. Zhu J-Y, Krahenbuhl P, Shechtman E, Efros AA (2016) Generative visual manipulation on the natural image manifold. In: European conference on computer vision. Springer, Berlin, pp 597–613

    Google Scholar 

  51. Li S, Xu P, Li B, Chen L, Zhou Z, Hao H, Duan Y, Folkert MR, Ma J, Huang S (2019) Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features. Phys Med Biol 64:175012

    Article  Google Scholar 

  52. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maftt D, Pringle M (2013) The cancer imaging archive (tcia): maintaining and operating a public information repository. J Digit Image 26:1045–1057

    Article  Google Scholar 

  53. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Info Process Syst 25:1097–1105

    Google Scholar 

  54. Kang G, Liu K, Hou B, Zhang N (2017) 3D multi-view convolutional neural networks for lung nodule classification. PLoS ONE 12:e0188290

    Article  Google Scholar 

  55. Yan X, Pang J, Qi H, Zhu Y, Bai C, Geng X, Liu M, Terzopoulos D, Ding X (2017) Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: a comparison between 2D and 3D strategies. In: Chen C-S, Lu J, Ma KK (eds) BT—computer vision—ACCV 2016 workshops. Springer International Publishing, Cham, pp 91–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtasam Ahmad Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddiqui, E.A., Chourasia, V., Shandilya, M., Patel, V. (2022). Computed Tomography Image Processing Methods for Lung Nodule Detection and Classification: A Review. In: Sharma, S., Peng, SL., Agrawal, J., Shukla, R.K., Le, DN. (eds) Data, Engineering and Applications. Lecture Notes in Electrical Engineering, vol 907. Springer, Singapore. https://doi.org/10.1007/978-981-19-4687-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4687-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4686-8

  • Online ISBN: 978-981-19-4687-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics