Skip to main content

Carbon-Based Nanomaterials for Hydrogen Evolution Reaction

  • Chapter
  • First Online:
Carbon-Based Nanomaterials for Energy Conversion and Storage

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 325))

  • 411 Accesses

Abstract

Developing high-efficiency and strong stability hydrogen evolution reaction (HER) electrocatalysts is the critical and promising part of reducing the catalytic energy barrier and improving the efficiency of hydrogen production. For designing prominent HER electrocatalysts, challenges remain in creating large number of effective catalytic sites for HER while maintaining their robustness at high output volumes. Therefore, the development of effective anchoring of catalytic active sites on low-cost, highly conductive carbon carriers to effectively promote metal catalytic performance through strong metal-support interactions (SMSI) is a well-established strategy that has been widely investigated. Carbon-based nanomaterials have attracted extensive attention as a promising class of HER catalysts for green sustainable energy conversion and beyond, due to their low-cost, diverse forms and highly tunable electronic structures. Herein, a summary of the advanced research progress of various types of carbon-based catalysts has been discussed, mainly including the metal-free carbon-based nanomaterials, atomically dispersed metal carbon-based materials, metal nanoparticles supported carbon-based materials, and metal nanoparticles encapsulated carbon-based materials. Finally, some notable challenges and prospects that are instructive for the design and development of next-generation high-performance carbon-based electrocatalysts have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.W. Menezes, S. Yao, R. Beltrán-Suito, J.N. Hausmann, P.V. Menezes, M. Driess, Facile access to an active γ-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic nickel germanide precursor. Angew. Chem. Int. Ed. 60, 4640–4647 (2021). https://doi.org/10.1002/anie.202014331

    Article  CAS  Google Scholar 

  2. W. Yang, S. Chen, Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng. J. 393, 124726 (2020). https://doi.org/10.1016/j.cej.2020.124726

    Article  CAS  Google Scholar 

  3. J. Theerthagiri, S.J. Lee, A.P. Murthy, J. Madhavan, M.Y. Choi, Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 24, 100805 (2020). https://doi.org/10.1016/j.cossms.2020.100805

  4. A. Ali, P.K. Shen, Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2, 99–121 (2020). https://doi.org/10.1002/cey2.26

    Article  CAS  Google Scholar 

  5. Y. Pan, C. Zhang, Y. Lin, Z. Liu, M. Wang, C. Chen, Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 63, 921–948 (2020). https://doi.org/10.1007/s40843-019-1242-1

    Article  CAS  Google Scholar 

  6. W. Hua, H.-H. Sun, F. Xu, J.-G. Wang, A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 39, 335–351 (2020). https://doi.org/10.1007/s12598-020-01384-7

    Article  CAS  Google Scholar 

  7. Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017). https://doi.org/10.1016/j.nantod.2017.06.006

    Article  CAS  Google Scholar 

  8. S.-S. Lu, L.-M. Zhang, Y.-W. Dong, J.-Q. Zhang, X.-T. Yan, D.-F. Sun, X. Shang, J.-Q. Chi, Y.-M. Chai, B. Dong, Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J. Mater. Chem. A 7, 16859–16866 (2019). https://doi.org/10.1039/C9TA03944A

    Article  CAS  Google Scholar 

  9. X. Xiao, L. Tao, M. Li, X. Lv, D. Huang, X. Jiang, H. Pan, M. Wang, Y. Shen, Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chem. Sci. 9, 1970–1975 (2018). https://doi.org/10.1039/C7SC04849A

    Article  CAS  Google Scholar 

  10. D. Chen, Z. Pu, R. Lu, P. Ji, P. Wang, J. Zhu, C. Lin, H.-W. Li, X. Zhou, Z. Hu, F. Xia, J. Wu, S. Mu, Ultralow Ru loading transition metal phosphides as high-efficient bifunctional electrocatalyst for a solar-to-hydrogen generation system. Adv. Energy Mater. 10, 2000814 (2020). https://doi.org/10.1002/aenm.202000814

    Article  CAS  Google Scholar 

  11. Z. Wu, Y. Zhao, H. Wu, Y. Gao, Z. Chen, W. Jin, J. Wang, T. Ma, L. Wang, Corrosion engineering on iron foam toward efficiently electrocatalytic overall water splitting powered by sustainable energy. Adv. Func. Mater. 31, 2010437 (2021). https://doi.org/10.1002/adfm.202010437

    Article  CAS  Google Scholar 

  12. L. Yan, H. Wang, J. Shen, J. Ning, Y. Zhong, Y. Hu, Formation of mesoporous Co/CoS/Metal–N–C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 403, 126385 (2021). https://doi.org/10.1016/j.cej.2020.126385

    Article  CAS  Google Scholar 

  13. Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016). https://doi.org/10.1039/C5CS00434A

    Article  CAS  Google Scholar 

  14. D. Khalafallah, M. Zhi, Z. Hong, Recent trends in synthesis and investigation of nickel phosphide compound/hybrid-based electrocatalysts towards hydrogen generation from water electrocatalysis. Top. Curr. Chem. 377, 29 (2019). https://doi.org/10.1007/s41061-019-0254-3

    Article  CAS  Google Scholar 

  15. Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 7, 14971–15005 (2019). https://doi.org/10.1039/C9TA03220G

    Article  CAS  Google Scholar 

  16. Y. Pei, Y. Cheng, J. Chen, W. Smith, P. Dong, P.M. Ajayan, M. Ye, J. Shen, Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 6, 23220–23243 (2018). https://doi.org/10.1039/C8TA09454C

    Article  CAS  Google Scholar 

  17. M. Kuang, Q. Wang, P. Han, G. Zheng, Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 7, 1700193 (2017). https://doi.org/10.1002/aenm.201700193

    Article  CAS  Google Scholar 

  18. Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917–1933 (2016). https://doi.org/10.1002/adma.201503270

    Article  CAS  Google Scholar 

  19. W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016). https://doi.org/10.1016/j.nanoen.2016.08.027

    Article  CAS  Google Scholar 

  20. Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S.Z. Qiao, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8, 5290–5296 (2014). https://doi.org/10.1021/nn501434a

    Article  CAS  Google Scholar 

  21. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 29, 1605838 (2017). https://doi.org/10.1002/adma.201605838

    Article  CAS  Google Scholar 

  22. Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design. Adv. Sci. 7, 2001069 (2020). https://doi.org/10.1002/advs.202001069

    Article  CAS  Google Scholar 

  23. C. Gao, F. Lyu, Y. Yin, Encapsulated metal nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021). https://doi.org/10.1021/acs.chemrev.0c00237

    Article  CAS  Google Scholar 

  24. Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He, Q. Chen, Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 8, 3563–3571 (2015). https://doi.org/10.1039/C5EE02460A

    Article  CAS  Google Scholar 

  25. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009). https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  26. L. Tao, Y. Wang, Y. Zou, N. Zhang, Y. Zhang, Y. Wu, Y. Wang, R. Chen, S. Wang, Charge transfer modulated activity of carbon-based electrocatalysts. Adv. Energy Mater. 10, 1901227 (2020). https://doi.org/10.1002/aenm.201901227

    Article  CAS  Google Scholar 

  27. B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095

    Article  CAS  Google Scholar 

  28. X. Wang, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting. Adv. Mater. 31, 1803625 (2019). https://doi.org/10.1002/adma.201803625

    Article  CAS  Google Scholar 

  29. S. Zhao, D.-W. Wang, R. Amal, L. Dai, Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 31, 1801526 (2019). https://doi.org/10.1002/adma.201801526

    Article  CAS  Google Scholar 

  30. R. Paul, L. Zhu, H. Chen, J. Qu, L. Dai, Recent advances in carbon-based metal-free electrocatalysts. Adv. Mater. 31, 1806403 (2019). https://doi.org/10.1002/adma.201806403

    Article  CAS  Google Scholar 

  31. Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016). https://doi.org/10.1002/adma.201602912

    Article  CAS  Google Scholar 

  32. Q. Han, Z. Cheng, J. Gao, Y. Zhao, Z. Zhang, L. Dai, L. Qu, Mesh-on-mesh graphitic-C3N4@graphene for highly efficient hydrogen evolution. Adv. Func. Mater. 27, 1606352 (2017). https://doi.org/10.1002/adfm.201606352

    Article  CAS  Google Scholar 

  33. Z. Pei, J. Gu, Y. Wang, Z. Tang, Z. Liu, Y. Huang, Y. Huang, J. Zhao, Z. Chen, C. Zhi, Component matters: Paving the roadmap toward enhanced electrocatalytic performance of graphitic C3N4-based catalysts via atomic tuning. ACS Nano 11, 6004–6014 (2017). https://doi.org/10.1021/acsnano.7b01908

    Article  CAS  Google Scholar 

  34. H. Huang, M. Yan, C. Yang, H. He, Q. Jiang, L. Yang, Z. Lu, Z. Sun, X. Xu, Y. Bando, Y. Yamauchi, Graphene nanoarchitectonics: Recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 31, 1903415 (2019). https://doi.org/10.1002/adma.201903415

    Article  CAS  Google Scholar 

  35. X. Gui, Z. Zeng, Y. Zhu, H. Li, Z. Lin, Q. Gan, R. Xiang, A. Cao, Z. Tang, Three-dimensional carbon nanotube sponge-array architectures with high energy dissipation. Adv. Mater. 26, 1248–1253 (2014). https://doi.org/10.1002/adma.201304493

    Article  CAS  Google Scholar 

  36. D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29, 1606459 (2017). https://doi.org/10.1002/adma.201606459

    Article  CAS  Google Scholar 

  37. C. Tang, H.-F. Wang, Q. Zhang, Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 51, 881–889 (2018). https://doi.org/10.1021/acs.accounts.7b00616

    Article  CAS  Google Scholar 

  38. Z. Pei, J. Zhao, Y. Huang, Y. Huang, M. Zhu, Z. Wang, Z. Chen, C. Zhi, Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. J. Mater. Chem. A 4, 12205–12211 (2016). https://doi.org/10.1039/C6TA03588D

    Article  CAS  Google Scholar 

  39. P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, Z. Fan, C. Wang, X. Zhang, J.T. Miller, L. Sun, J. Hou, Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021). https://doi.org/10.1038/s41467-021-24828-9

    Article  CAS  Google Scholar 

  40. Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995

    Article  CAS  Google Scholar 

  41. Y.-N. Chen, X. Zhang, Z. Zhou, Carbon-based substrates for highly dispersed nanoparticle and even single-atom electrocatalysts. Small Methods 3, 1900050 (2019). https://doi.org/10.1002/smtd.201900050

    Article  CAS  Google Scholar 

  42. D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y.A. Haleem, S. Duan, J. Lu, B. Ge, P.M. Ajayan, Y. Luo, J. Jiang, L. Song, Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6

    Article  CAS  Google Scholar 

  43. M.B. Gawande, P. Fornasiero, R. Zbořil, Carbon-based single-atom catalysts for advanced applications. ACS Catal. 10, 2231–2259 (2020). https://doi.org/10.1021/acscatal.9b04217

    Article  CAS  Google Scholar 

  44. Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang, S. Mu, W. Zhao, F. Su, G. Zhang, S. Liao, S. Sun, Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Letters 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y

    Article  CAS  Google Scholar 

  45. M. Fan, J. Cui, J. Wu, R. Vajtai, D. Sun, P.M. Ajayan, Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 16, 1906782 (2020). https://doi.org/10.1002/smll.201906782

    Article  CAS  Google Scholar 

  46. K. Gao, B. Wang, L. Tao, B.V. Cunning, Z. Zhang, S. Wang, R.S. Ruoff, L. Qu, Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 31, 1805121 (2019). https://doi.org/10.1002/adma.201805121

    Article  CAS  Google Scholar 

  47. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  48. Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017). https://doi.org/10.1002/anie.201702473

    Article  CAS  Google Scholar 

  49. P. Su, W. Pei, X. Wang, Y. Ma, Q. Jiang, J. Liang, S. Zhou, J. Zhao, J. Liu, G.Q. Lu, Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem. Int. Ed. 60, 16044–16050 (2021). https://doi.org/10.1002/anie.202103557

    Article  CAS  Google Scholar 

  50. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). https://doi.org/10.1038/ncomms4783

    Article  Google Scholar 

  51. Y. Liang, Y. Li, H. Wang, H. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 135, 2013–2036 (2013). https://doi.org/10.1021/ja3089923

    Article  CAS  Google Scholar 

  52. Y. Zhang, L. Guo, L. Tao, Y. Lu, S. Wang, Defect-based single-atom electrocatalysts. Small Methods 3, 1800406 (2019). https://doi.org/10.1002/smtd.201800406

    Article  CAS  Google Scholar 

  53. H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 3, 917 (2012). https://doi.org/10.1038/ncomms1921

    Article  CAS  Google Scholar 

  54. K. Khan, T. Liu, M. Arif, X. Yan, M.D. Hossain, F. Rehman, S. Zhou, J. Yang, C. Sun, S.-H. Bae, J. Kim, K. Amine, X. Pan, Z. Luo, Laser-irradiated holey graphene-supported single-atom catalyst towards hydrogen evolution and oxygen reduction. Adv. Energy Mater. 11, 2101619 (2021). https://doi.org/10.1002/aenm.202101619

    Article  CAS  Google Scholar 

  55. R. Liu, Z. Gong, J. Liu, J. Dong, J. Liao, H. Liu, H. Huang, J. Liu, M. Yan, K. Huang, H. Gong, J. Zhu, C. Cui, G. Ye, H. Fei, Design of aligned porous carbon films with single-atom Co–N–C sites for high-current-density hydrogen generation. Adv. Mater. 33, 2103533 (2021). https://doi.org/10.1002/adma.202103533

    Article  CAS  Google Scholar 

  56. J. Yang, W. Liu, M. Xu, X. Liu, H. Qi, L. Zhang, X. Yang, S. Niu, D. Zhou, Y. Liu, Y. Su, J.-F. Li, Z.-Q. Tian, W. Zhou, A. Wang, T. Zhang, Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143, 14530–14539 (2021). https://doi.org/10.1021/jacs.1c03788

    Article  CAS  Google Scholar 

  57. G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.-A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J.-N. Zhang, Regulating Fe-spin state by atomically dispersed Mn–N in Fe–N–C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5

    Article  CAS  Google Scholar 

  58. L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019). https://doi.org/10.1038/s41929-018-0203-5

    Article  CAS  Google Scholar 

  59. D. Voiry, H.S. Shin, K.P. Loh, M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2, 0105 (2018). https://doi.org/10.1038/s41570-017-0105

    Article  CAS  Google Scholar 

  60. M. Ming, Y. Zhang, C. He, L. Zhao, S. Niu, G. Fan, J.-S. Hu, Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 15, 1903057 (2019). https://doi.org/10.1002/smll.201903057

    Article  CAS  Google Scholar 

  61. T. Liu, S. Wang, Q. Zhang, L. Chen, W. Hu, C.M. Li, Ultrasmall Ru2P nanoparticles on graphene: A highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 54, 3343–3346 (2018). https://doi.org/10.1039/C8CC01166D

    Article  CAS  Google Scholar 

  62. L. Wang, Y. Li, M. Xia, Z. Li, Z. Chen, Z. Ma, X. Qin, G. Shao, Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J. Power Sour. 347, 220–228 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.017

    Article  CAS  Google Scholar 

  63. Y. Jiang, X. Li, S. Yu, L. Jia, X. Zhao, C. Wang, Reduced graphene oxide-modified carbon nanotube/polyimide film supported MoS2 nanoparticles for electrocatalytic hydrogen evolution. Adv. Func. Mater. 25, 2693–2700 (2015). https://doi.org/10.1002/adfm.201500194

    Article  CAS  Google Scholar 

  64. L. He, F. Weniger, H. Neumann, M. Beller, Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem. Int. Ed. 55, 12582–12594 (2016). https://doi.org/10.1002/anie.201603198

  65. T.-W. Lin, C.-J. Liu, J.-Y. Lin, Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Appl. Catal. B 134–135, 75–82 (2013). https://doi.org/10.1016/j.apcatb.2013.01.004

    Article  CAS  Google Scholar 

  66. X. Sun, N. Habibul, H. Du, Co0.85Se magnetic nanoparticles supported on carbon nanotubes as catalyst for hydrogen evolution reaction. Chin. J. Catal. 42, 235–243 (2021). https://doi.org/10.1016/S1872-2067(20)63632-4

    Article  CAS  Google Scholar 

  67. T.-W. Lin, C.-J. Liu, C.-S. Dai, Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl. Catal. B 154–155, 213–220 (2014). https://doi.org/10.1016/j.apcatb.2014.02.017

    Article  CAS  Google Scholar 

  68. D.H. Kweon, M.S. Okyay, S.-J. Kim, J.-P. Jeon, H.-J. Noh, N. Park, J. Mahmood, J.-B. Baek, Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 11, 1278 (2020). https://doi.org/10.1038/s41467-020-15069-3

    Article  CAS  Google Scholar 

  69. X. Wu, Z. Wang, D. Zhang, Y. Qin, M. Wang, Y. Han, T. Zhan, B. Yang, S. Li, J. Lai, L. Wang, Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 12, 4018 (2021). https://doi.org/10.1038/s41467-021-24322-2

    Article  CAS  Google Scholar 

  70. H. Tabassum, R. Zou, A. Mahmood, Z. Liang, S. Guo, A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts. J. Mater. Chem. A 4, 16469–16475 (2016). https://doi.org/10.1039/C6TA07214C

  71. T. Sun, Q. Wu, Y. Jiang, Z. Zhang, L. Du, L. Yang, X. Wang, Z. Hu, Sulfur and nitrogen codoped carbon tubes as bifunctional metal-free electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. Chem. Eur. J. 22, 10326–10329 (2016). https://doi.org/10.1002/chem.201601535

  72. X. Wu, B. Feng, W. Li, Y. Niu, Y. Yu, S. Lu, C. Zhong, P. Liu, Z. Tian, L. Chen, W. Hu, C.M. Li, Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media. Nano Energy 62, 117–126 (2019). https://doi.org/10.1016/j.nanoen.2019.05.034

    Article  CAS  Google Scholar 

  73. K.-C. Pham, Y.-H. Chang, D.S. McPhail, C. Mattevi, A.T.S. Wee, D.H.C. Chua, Amorphous molybdenum sulfide on graphene–carbon nanotube hybrids as highly active hydrogen evolution reaction catalysts. ACS Appl. Mater. Interfaces. 8, 5961–5971 (2016). https://doi.org/10.1021/acsami.5b09690

    Article  CAS  Google Scholar 

  74. B. Cao, M. Hu, Y. Cheng, P. Jing, B. Liu, B. Zhou, X. Wang, R. Gao, X. Sun, Y. Du, J. Zhang, Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanoparticles and single-atom Co for a superior hydrogen evolution reaction. NPG Asia Mater. 13, 1 (2021). https://doi.org/10.1038/s41427-020-00264-x

    Article  CAS  Google Scholar 

  75. J. Liu, X. Wan, S. Liu, X. Liu, L. Zheng, R. Yu, J. Shui, Hydrogen passivation of M–N–C (M = Fe, Co) catalysts for storage stability and ORR activity improvements. Adv. Mater. 33, 2103600 (2021). https://doi.org/10.1002/adma.202103600

    Article  CAS  Google Scholar 

  76. Z. Wei, Y. Liu, Z. Peng, H. Song, Z. Liu, B. Liu, B. Li, B. Yang, S. Lu, Cobalt-ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sustain. Chem. Eng. 7, 7014–7023 (2019). https://doi.org/10.1021/acssuschemeng.8b06745

    Article  CAS  Google Scholar 

  77. J.-Y. Wang, T. Ouyang, N. Li, T. Ma, Z.-Q. Liu, S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting. Sci. Bull. 63, 1130–1140 (2018). https://doi.org/10.1016/j.scib.2018.07.008

    Article  CAS  Google Scholar 

  78. M. Tavakkoli, T. Kallio, O. Reynaud, A.G. Nasibulin, C. Johans, J. Sainio, H. Jiang, E.I. Kauppinen, K. Laasonen, Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 4535–4538 (2015). https://doi.org/10.1002/anie.201411450

    Article  CAS  Google Scholar 

  79. T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao, Z.-Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β–Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923–4928 (2019). https://doi.org/10.1002/anie.201814262

    Article  CAS  Google Scholar 

  80. X. Wang, Y. Zheng, J. Yuan, J. Shen, L. Niu, A.-J. Wang, Controllable synthesis of caterpilliar-like molybdenum sulfide @carbon nanotube hybrids with core shell structure for hydrogen evolution. Electrochim. Acta 235, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.02.093

    Article  CAS  Google Scholar 

  81. J. Yu, G. Li, H. Liu, L. Zeng, L. Zhao, J. Jia, M. Zhang, W. Zhou, H. Liu, Y. Hu, Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv. Sci. 6, 1901458 (2019). https://doi.org/10.1002/advs.201901458

    Article  CAS  Google Scholar 

  82. T. Li, G. Luo, K. Liu, X. Li, D. Sun, L. Xu, Y. Li, Y. Tang, Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube-grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv. Func. Mater. 28, 1805828 (2018). https://doi.org/10.1002/adfm.201805828

    Article  CAS  Google Scholar 

  83. J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 14969 (2017). https://doi.org/10.1038/ncomms14969

    Article  Google Scholar 

  84. J. Wang, R. Zhu, J. Cheng, Y. Song, M. Mao, F. Chen, Y. Cheng, Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction. Chem. Eng. J. 397, 125481 (2020). https://doi.org/10.1016/j.cej.2020.125481

    Article  CAS  Google Scholar 

  85. Z. Chen, R. Wu, Y. Liu, Y. Ha, Y. Guo, D. Sun, M. Liu, F. Fang, Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, 1802011 (2018). https://doi.org/10.1002/adma.201802011

    Article  CAS  Google Scholar 

  86. J. Ma, M. Wang, G. Lei, G. Zhang, F. Zhang, W. Peng, X. Fan, Y. Li, Polyaniline derived N-doped carbon-coated cobalt phosphide nanoparticles deposited on N-doped graphene as an efficient electrocatalyst for hydrogen evolution reaction. Small 14, 1702895 (2018). https://doi.org/10.1002/smll.201702895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siran Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, B., Xu, S. (2022). Carbon-Based Nanomaterials for Hydrogen Evolution Reaction. In: Zhang, JN. (eds) Carbon-Based Nanomaterials for Energy Conversion and Storage. Springer Series in Materials Science, vol 325. Springer, Singapore. https://doi.org/10.1007/978-981-19-4625-7_6

Download citation

Publish with us

Policies and ethics