Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 325))

Abstract

Nanotechnology refers to the study of the properties and interactions of substances (including the manipulation of atoms and molecules) on the nanometer scale (between 1 and 100 nm), as well as the multidisciplinary science and technology that utilizes these properties, covering multiple fields such as physics, chemistry, materials, science, engineering, biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Andres, R.S. Averback, W.L. Brown, L.E. Brus, W.A. Goddard, A. Kaldor, S.G. Louie, M. Moscovits, P.S. Peercy, S.J. Riley, R.W. Siegel, F. Spaepen, Y. Wang, Research opportunities on clusters and cluster-assembled materials—A department of energy, council on materials science panel report. J. Mater. Res. 4, 704–736 (2011). https://doi.org/10.1557/jmr.1989.0704

    Article  Google Scholar 

  2. P. Moriarty, Nanostructured materials. Rep. Prog. Phys. 64, 297–381 (2001). https://doi.org/10.1088/0034-4885/64/3/201

    Article  CAS  Google Scholar 

  3. R.F. Curl, R.E. Smalley, Probing C60. Science 242, 1017–1022 (1988). https://doi.org/10.1126/science.242.4881.1017

    Article  CAS  Google Scholar 

  4. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: A new form of carbon. Nature 347, 354–358 (1990). https://doi.org/10.1038/347354a0

    Article  Google Scholar 

  5. H. Gleiter, Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1–29 (2000). https://doi.org/10.1016/s1359-6454(99)00285-2

    Article  CAS  Google Scholar 

  6. A.S. Dahlan, Smart and functional materials based nanomaterials in construction styles in nano-architecture. SILICON 11, 1949–1953 (2019). https://doi.org/10.1007/s12633-018-0015-x

    Article  CAS  Google Scholar 

  7. Gkika DA, Vordos N, Nolan JW, Mitropoulos AC, Vansant EF, Cool P, Braet J (2017) Price tag in nanomaterials?. J. Nanopart. Res. 19. https://doi.org/10.1007/s11051-017-3875-x

  8. P. Kumar, Ultrathin 2D nanomaterials for electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1901454 (2019). https://doi.org/10.1002/admi.201901454

    Article  Google Scholar 

  9. S. Muhammad, M. Nakano, A.G. Al-Sehemi, Y. Kitagawa, A. Irfan, A.R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, K. Fukuda, Role of a singlet diradical character in carbon nanomaterials: A novel hot spot for efficient nonlinear optical materials. Nanoscale 8, 17998–18020 (2016). https://doi.org/10.1039/c6nr06097h

    Article  CAS  Google Scholar 

  10. P. Qu, M. Zhang, K. Fan, Z. Guo, Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit. Rev. Food Sci. Nutr. 62, 51–65 (2022). https://doi.org/10.1080/10408398.2020.1811635

    Article  CAS  Google Scholar 

  11. S. Erker, R. Stangl, G. Stoeglehner, Resilience in the light of energy crises—Part I: A framework to conceptualise regional energy resilience. J. Clean. Prod. 164, 420–433 (2017). https://doi.org/10.1016/j.jclepro.2017.06.163

    Article  Google Scholar 

  12. H.J. Smith, The PACE of clean energy development. Science 355, 921–922 (2017). https://doi.org/10.1126/science.355.6328.921-c

    Article  Google Scholar 

  13. A. Bailey, L. Andrews, A. Khot, L. Rubin, J. Young, T.D. Allston, G.A. Takacs, Hydrogen storage experiments for an undergraduate laboratory course—clean energy: Hydrogen/fuel cells. J. Chem. Educ. 92, 688–692 (2014). https://doi.org/10.1021/ed5006294

    Article  CAS  Google Scholar 

  14. H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1, 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.008

    Article  CAS  Google Scholar 

  15. J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31, 1808167 (2019). https://doi.org/10.1002/adma.201808167

    Article  CAS  Google Scholar 

  16. M. de Jesus Gálvez-Vázquez, P. Moreno-García, H. Xu, Y. Hou, H. Hu, I.Z. Montiel, A.V. Rudnev, S. Alinejad, V. Grozovski, B.J. Wiley, M. Arenz, P. Broekmann, Environment matters: CO2RR electrocatalyst performance testing in a gas-fed zero-gap electrolyzer. ACS Catal. 10, 13096–13108 (2020). https://doi.org/10.1021/acscatal.0c03609

    Article  CAS  Google Scholar 

  17. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229–251 (2012). https://doi.org/10.1002/adma.201102752

    Article  CAS  Google Scholar 

  18. Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42, 3127–3171 (2013). https://doi.org/10.1039/c3cs00009e

    Article  CAS  Google Scholar 

  19. D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7

    Article  CAS  Google Scholar 

  20. N. Choudhary, S. Hwang, W. Choi, Carbon nanomaterials: A review, in Handbook of nanomaterials properties. ed. by B. Bhushan, D. Luo, S.R. Schricker, W. Sigmund, S. Zauscher (Springer, Berlin Heidelberg, Berlin, 2014), pp. 709–769

    Chapter  Google Scholar 

  21. F. Ghaemi, M. Ali, R. Yunus, R.N. Othman, Synthesis of carbon nanomaterials using catalytic chemical vapor deposition technique, in Synthesis, technology and applications of carbon nanomaterials, eds. by S.A. Rashid, R.N.I. Raja Othman, M.Z. Hussein (Elsevier, 2019), pp. 1–27

    Google Scholar 

  22. A.D. Goswami, D.H. Trivedi, N.L. Jadhav, D.V. Pinjari, Sustainable and green synthesis of carbon nanomaterials: A review. J. Environ. Chem. Eng. 9, 106118 (2021). https://doi.org/10.1016/j.jece.2021.106118

    Article  CAS  Google Scholar 

  23. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352

    Article  CAS  Google Scholar 

  24. K.P. Gopinath, D.-V.N. Vo, D. Gnana Prakash, A. Adithya Joseph, S. Viswanathan, J. Arun, Environmental applications of carbon-based materials: A review. Environ. Chem. Lett. 19, 557–582 (2020). https://doi.org/10.1007/s10311-020-01084-9

    Article  CAS  Google Scholar 

  25. J. Ni, Y. Li, Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6, 1600278 (2016). https://doi.org/10.1002/aenm.201600278

    Article  CAS  Google Scholar 

  26. S. Peng, L. Li, J. Kong Yoong Lee, L. Tian, M. Srinivasan, S. Adams, S. Ramakrishna, Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22, 361–395 (2016). https://doi.org/10.1016/j.nanoen.2016.02.001

  27. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42, 2824–2860 (2013). https://doi.org/10.1039/c2cs35335k

    Article  CAS  Google Scholar 

  28. H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo, Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl. Catal. B 239, 408–424 (2018). https://doi.org/10.1016/j.apcatb.2018.07.068

    Article  CAS  Google Scholar 

  29. T. Xu, W. Shen, W. Huang, X. Lu, Fullerene micro/nanostructures: Controlled synthesis and energy applications. Mat. Today Nano 11, 100081 (2020). https://doi.org/10.1016/j.mtnano.2020.100081

    Article  Google Scholar 

  30. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985). https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  31. Z. Jiang, Y. Zhao, X. Lu, J. Xie, Fullerenes for rechargeable battery applications: Recent developments and future perspectives. J. Energy Chem. 55, 70–79 (2021). https://doi.org/10.1016/j.jechem.2020.06.065

    Article  Google Scholar 

  32. M. Chen, R. Guan, S. Yang, Hybrids of fullerenes and 2D nanomaterials. Adv. Sci. 6, 1800941 (2019). https://doi.org/10.1002/advs.201800941

    Article  CAS  Google Scholar 

  33. C. Shan, H.-J. Yen, K. Wu, Q. Lin, M. Zhou, X. Guo, D. Wu, H. Zhang, G. Wu, H.-L. Wang, Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications. Nano Energy 40, 327–335 (2017). https://doi.org/10.1016/j.nanoen.2017.08.033

    Article  CAS  Google Scholar 

  34. J. Restivo, O.S. Gonçalves Pinto Soares, M.F. Ribeiro Pereira, Processing methods used in the fabrication of macrostructures containing 1D carbon nanomaterials for catalysis. Processes 8, (2020). https://doi.org/10.3390/pr8111329

  35. S.S. Mahmood, A.J. Atiya, F.H. Abdulrazzak, A.F. Alkaim, F.H. Hussein, A review on applications of carbon nanotubes (CNTs) in solar cells. J. Med. Chem. Sci. 4, 225–229 (2021). https://doi.org/10.26655/jmchemsci.2021.3.2

  36. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  37. R.K. Thines, N.M. Mubarak, S. Nizamuddin, J.N. Sahu, E.C. Abdullah, P. Ganesan, Application potential of carbon nanomaterials in water and wastewater treatment: A review. J. Taiwan Inst. Chem. Eng. 72, 116–133 (2017). https://doi.org/10.1016/j.jtice.2017.01.018

    Article  CAS  Google Scholar 

  38. Q. Wu, L. Yang, X. Wang, Z. Hu, From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017). https://doi.org/10.1021/acs.accounts.6b00541

    Article  CAS  Google Scholar 

  39. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  40. N.G. Sahoo, Y. Pan, L. Li, S.H. Chan, Graphene-based materials for energy conversion. Adv. Mater. 24, 4203–4210 (2012). https://doi.org/10.1002/adma.201104971

    Article  CAS  Google Scholar 

  41. Y. Wang, P. Yang, L. Zheng, X. Shi, H. Zheng, Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review. Energy Storage Mater. 26, 349–370 (2020). https://doi.org/10.1016/j.ensm.2019.11.006

    Article  Google Scholar 

  42. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006). https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  43. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  44. A. Ali, P.K. Shen, Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2, 99–121 (2019). https://doi.org/10.1002/cey2.26

    Article  CAS  Google Scholar 

  45. X. Li, X. Yang, J. Zhang, Y. Huang, B. Liu, In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019). https://doi.org/10.1021/acscatal.8b04937

    Article  CAS  Google Scholar 

  46. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  47. S. Zhao, D.W. Wang, R. Amal, L. Dai, Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 31, 1801526 (2019). https://doi.org/10.1002/adma.201801526

    Article  CAS  Google Scholar 

  48. W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu, Y. Huang, Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3, 1800323 (2018). https://doi.org/10.1002/smtd.201800323

    Article  CAS  Google Scholar 

  49. T. Asefa, X. Huang, Heteroatom-doped carbon materials for electrocatalysis. Chemistry 23, 10703–10713 (2017). https://doi.org/10.1002/chem.201700439

    Article  CAS  Google Scholar 

  50. X. Wang, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting. Adv. Mater. 31, 1803625 (2019). https://doi.org/10.1002/adma.201803625

    Article  CAS  Google Scholar 

  51. W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016). https://doi.org/10.1016/j.nanoen.2016.08.027

    Article  CAS  Google Scholar 

  52. L. Tao, Y. Wang, Y. Zou, N. Zhang, Y. Zhang, Y. Wu, Y. Wang, R. Chen, S. Wang, Charge transfer modulated activity of carbon-based electrocatalysts. Adv. Energy Mater. 10, 1901227 (2019). https://doi.org/10.1002/aenm.201901227

    Article  CAS  Google Scholar 

  53. A. Ferre-Vilaplana, E. Herrero, Charge transfer, bonding conditioning and solvation effect in the activation of the oxygen reduction reaction on unclustered graphitic-nitrogen-doped graphene. Phys. Chem. Chem. Phys. 17, 16238–16242 (2015). https://doi.org/10.1039/c5cp00918a

    Article  CAS  Google Scholar 

  54. J. Yang, W. Li, D. Wang, Y. Li, Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020). https://doi.org/10.1002/adma.202003300

    Article  CAS  Google Scholar 

  55. A. Beck, X. Huang, L. Artiglia, M. Zabilskiy, X. Wang, P. Rzepka, D. Palagin, M.G. Willinger, J.A. van Bokhoven, The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat. Commun. 11, 3220 (2020). https://doi.org/10.1038/s41467-020-17070-2

    Article  CAS  Google Scholar 

  56. B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095

    Article  CAS  Google Scholar 

  57. M.B. Gawande, P. Fornasiero, R. Zbořil, Carbon-based single-atom catalysts for advanced applications. ACS Catal. 10, 2231–2259 (2020). https://doi.org/10.1021/acscatal.9b04217

    Article  CAS  Google Scholar 

  58. Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, e1801995 (2018). https://doi.org/10.1002/adma.201801995

    Article  CAS  Google Scholar 

  59. B. Wu, Y. Kuang, X. Zhang, J. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 6, 75–90 (2011). https://doi.org/10.1016/j.nantod.2010.12.008

    Article  CAS  Google Scholar 

  60. R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 109, 12663–12676 (2005). https://doi.org/10.1021/jp051066p

    Article  CAS  Google Scholar 

  61. C. Gao, F. Lyu, Y. Yin, Encapsulated metal nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021). https://doi.org/10.1021/acs.chemrev.0c00237

    Article  CAS  Google Scholar 

  62. N. Wang, Q. Sun, J. Yu, Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts. Adv. Mater. 31, 1803966 (2019). https://doi.org/10.1002/adma.201803966

    Article  CAS  Google Scholar 

  63. Q.-L. Zhu, Q. Xu, Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1, 220–245 (2016). https://doi.org/10.1016/j.chempr.2016.07.005

    Article  CAS  Google Scholar 

  64. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935–7936 (2002). https://doi.org/10.1021/ja00096a076

    Article  Google Scholar 

  65. X. Yan, Y. Jia, X. Yao, Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 47, 7628–7658 (2018). https://doi.org/10.1039/c7cs00690j

    Article  CAS  Google Scholar 

  66. J. Lu, S. Yin, P.K. Shen, Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem Energy Rev 2, 105–127 (2018). https://doi.org/10.1007/s41918-018-0025-9

    Article  CAS  Google Scholar 

  67. N. Rao, R. Singh, L. Bashambu, Carbon-based nanomaterials: Synthesis and prospective applications. Mater. Today Proc. 44, 608–614 (2021). https://doi.org/10.1016/j.matpr.2020.10.593

    Article  CAS  Google Scholar 

  68. Y. Zhang, M. Luo, Y. Yang, Y. Li, S. Guo, Advanced multifunctional electrocatalysts for energy conversion. ACS Energy Lett. 4, 1672–1680 (2019). https://doi.org/10.1021/acsenergylett.9b01045

    Article  CAS  Google Scholar 

  69. Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1

    Article  Google Scholar 

  70. H. Yin, H. Xia, S. Zhao, K. Li, J. Zhang, S. Mu, Atomic level dispersed metal–nitrogen–carbon catalyst toward oxygen reduction reaction: Synthesis strategies and chemical environmental regulation. Energy Environ. Mater. 4, 5–18 (2020). https://doi.org/10.1002/eem2.12085

    Article  CAS  Google Scholar 

  71. Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu, J. Zhou, H. Li, H. Xia, J. He, Q. Xu, Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 30, 1804504 (2018). https://doi.org/10.1002/adma.201804504

    Article  CAS  Google Scholar 

  72. W. Tong, B. Huang, P. Wang, L. Li, Q. Shao, X. Huang, Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis. Angew. Chem. Int. Ed. 59, 2649–2653 (2020). https://doi.org/10.1002/anie.201913122

    Article  CAS  Google Scholar 

  73. Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng, M. Zhou, J. Li, Y. Qiao, S. Mu, Q. Xu, Co2P-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv. Func. Mater. 28, 1805641 (2018). https://doi.org/10.1002/adfm.201805641

    Article  CAS  Google Scholar 

  74. Y. Guo, P. Yuan, J. Zhang, Y. Hu, I.S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu, S. Mu, Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 12, 1894–1901 (2018). https://doi.org/10.1021/acsnano.7b08721

    Article  CAS  Google Scholar 

  75. X. Xue, J. Zhang, I.A. Saana, J. Sun, Q. Xu, S. Mu, Rational inert-basal-plane activating design of ultrathin 1T’ phase MoS2 with a MoO3 heterostructure for enhancing hydrogen evolution performances. Nanoscale 10, 16531–16538 (2018). https://doi.org/10.1039/c8nr05270k

    Article  CAS  Google Scholar 

  76. K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6, 5887–5903 (2016). https://doi.org/10.1021/acscatal.6b01222

    Article  CAS  Google Scholar 

  77. C. Zhang, W. Lv, Y. Tao, Q.-H. Yang, Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390–1403 (2015). https://doi.org/10.1039/c5ee00389j

    Article  CAS  Google Scholar 

  78. M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies. Nature 414, 332–337 (2001). https://doi.org/10.1038/35104599

    Article  CAS  Google Scholar 

  79. H. Xia, G. Qu, H. Yin, J. Zhang, Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. J. Mater. Chem. A 8, 15358–15372 (2020). https://doi.org/10.1039/d0ta04019c

    Article  CAS  Google Scholar 

  80. K. Guo, G. Qu, J. Li, H. Xia, W. Yan, J. Fu, P. Yuan, J. Zhang, Polysulfides shuttling remedies by interface-catalytic effect of Mn3O4-MnPx heterostructure. Energy Storage Mater. 36, 496–503 (2021). https://doi.org/10.1016/j.ensm.2021.01.021

    Article  Google Scholar 

  81. Y. Pan, K. Xu, C. Wu, Recent progress in supercapacitors based on the advanced carbon electrodes. Nanotechnol. Rev. 8, 299–314 (2019). https://doi.org/10.1515/ntrev-2019-0029

    Article  CAS  Google Scholar 

  82. X. Wang, L. Liu, Z. Niu, Carbon-based materials for lithium-ion capacitors. Mater. Chem. Frontiers 3, 1265–1279 (2019). https://doi.org/10.1039/c9qm00062c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Nan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, S., Wang, Y., Xue, D., Xia, H., Zhang, JN. (2022). Introduction. In: Zhang, JN. (eds) Carbon-Based Nanomaterials for Energy Conversion and Storage. Springer Series in Materials Science, vol 325. Springer, Singapore. https://doi.org/10.1007/978-981-19-4625-7_1

Download citation

Publish with us

Policies and ethics