Skip to main content

Reinforcement Learning-Based Computation Offloading Approach in VEC

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1491))

  • 741 Accesses

Abstract

Intelligent and Connected Vehicles (ICV) can effectively improve driving safety and traffic efficiency. With the national approach of energy conservation and emission reduction continuously promoting, Electric vehicles (EV) have become the main body of the next generation ICV. For the limited computing capacity and endurance of EV, it cannot meet the high computational requirements of in-vehicle intelligent applications. Therefore, it is a great challenge to design a appropriate offloading approach to reduce failure rate of vehicular applications and energy consumption of offloading, while considering inter-dependencies of applications, position change of vehicles and computing power of collaborative vehicles. In this paper, ICV computation offloading model is formulated as Markov Decision Process (MDP). A computing offloading approach based on Reinforcement Learning (RL) is proposed, which adopts Q-Learning based on Simulated Annealing (SA-QL) to optimize failure rate of vehicular applications and energy consumption of offloading. The simulated results show that the proposed approach can reduces the failure rate of vehicular applications and energy consumption of offloading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adiththan, A., Ramesh, S., Samii, S.: Cloud-assisted control of ground vehicles using adaptive computation offloading techniques. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE). pp. 589–592 (2018). https://doi.org/10.23919/DATE.2018.8342076

  2. Azimifar, M., Todd, T.D., Khezrian, A., Karakostas, G.: Vehicle-to-vehicle forwarding in green roadside infrastructure. IEEE Trans. Veh. Technol. 65(2), 780–795 (2016). https://doi.org/10.1109/TVT.2015.2402177

    Article  Google Scholar 

  3. Bondok, A.H., Lee, W., Kim, T.: Efficient scheduling for VANET considering renewable energy. In: 2020 22nd International Conference on Advanced Communication Technology (ICACT), pp. 217–221 (2020). https://doi.org/10.23919/ICACT48636.2020.9061360

  4. Dai, P., et al.: Multi-armed bandit learning for computation-intensive services in MEC-empowered vehicular networks. IEEE Trans. Veh. Technol. 69(7), 7821–7834 (2020). https://doi.org/10.1109/TVT.2020.2991641

    Article  Google Scholar 

  5. Dai, Y., Xu, D., Maharjan, S., Zhang, Y.: Joint load balancing and offloading in vehicular edge computing and networks. IEEE Internet Things J. 6(3), 4377–4387 (2019). https://doi.org/10.1109/JIOT.2018.2876298

    Article  Google Scholar 

  6. Dong, P., Wang, X., Rodrigues, J.: Deep reinforcement learning for vehicular edge computing: an intelligent offloading system. ACM Trans. Intell. Syst. Technol. 10 (2019). https://doi.org/10.1145/3317572

  7. Feng, J., Liu, Z., Wu, C., Ji, Y.: AVE: autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans. Veh. Technol. 66(12), 10660–10675 (2017). https://doi.org/10.1109/TVT.2017.2714704

    Article  Google Scholar 

  8. Guo, M., Wang, Y., Sun, H., Liu, Y.: Research on q-learning algorithm based on metropolis criterion. J. Comput. Res. Dev. 39(6), 684–688 (2002). https://doi.org/10.1007/s11769-002-0038-4

  9. Hou, X., et al.: Reliable computation offloading for edge-computing-enabled software-defined IoV. IEEE Internet Things J. 7(8), 7097–7111 (2020). https://doi.org/10.1109/JIOT.2020.2982292

    Article  Google Scholar 

  10. Hu, B., Li, J.: An edge computing framework for powertrain control system optimization of intelligent and connected vehicles based on curiosity-driven deep reinforcement learning. IEEE Trans. Ind. Electron. 68(8), 7652–7661 (2021). https://doi.org/10.1109/TIE.2020.3007100

    Article  Google Scholar 

  11. Ke, H., Wang, J., Deng, L., Ge, Y., Wang, H.: Deep reinforcement learning-based adaptive computation offloading for MEC in heterogeneous vehicular networks. IEEE Trans. Veh. Technol. 69(7), 7916–7929 (2020). https://doi.org/10.1109/TVT.2020.2993849

    Article  Google Scholar 

  12. Li, J., Xiao, Z., Li, P.: Discrete-time multi-player games based on off-policy q-learning. IEEE Access 7, 134647–134659 (2019). https://doi.org/10.1109/ACCESS.2019.2939384

    Article  Google Scholar 

  13. Li, X., Dang, Y., Aazam, M., Peng, X., Chen, T., Chen, C.: Energy-efficient computation offloading in vehicular edge cloud computing. IEEE Access 8, 37632–37644 (2020). https://doi.org/10.1109/ACCESS.2020.2975310

    Article  Google Scholar 

  14. Liu, L., Chen, C., Pei, Q., Maharjan, S., Zhang, Y.: Vehicular edge computing and networking: a survey. Mob. Netw. Appl. 26(3), 1145–1168 (2021)

    Google Scholar 

  15. Luo, Q., Li, C., Luan, T.H., Shi, W.: Collaborative data scheduling for vehicular edge computing via deep reinforcement learning. IEEE Internet Things J. 7(10), 9637–9650 (2020). https://doi.org/10.1109/JIOT.2020.2983660

    Article  Google Scholar 

  16. Lèbre, M.A., Le Mouël, F., Ménard, E.: Microscopic vehicular mobility trace of Europarc roundabout, Creteil, France (2015)

    Google Scholar 

  17. Mao, Y., Zhang, J., Song, S.H., Letaief, K.B.: Power-delay tradeoff in multi-user mobile-edge computing systems. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2016). DOI: https://doi.org/10.1109/GLOCOM.2016.7842160

  18. Meng, B., Yang, F., Liu, J., Wang, Y.: A survey of brake-by-wire system for intelligent connected electric vehicles. IEEE Access 8, 225424–225436 (2020). https://doi.org/10.1109/ACCESS.2020.3040184

    Article  Google Scholar 

  19. Qin, Y., Huang, D., Zhang, X.: Vehicloud: Cloud computing facilitating routing in vehicular networks. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1438–1445 (2012). DOI: https://doi.org/10.1109/TrustCom.2012.16

  20. Raza Naqvi, S.S., Wang, S., Ahmed, M., Anwar, M.: A survey on vehicular edge computing: architecture, applications, technical issues, and future directions. Wirel. Commun. Mob. Comput. 2019, 1–19 (2019). https://doi.org/10.1155/2019/3159762

  21. Speck, C., Bucci, D.J.: Distributed UAV swarm formation control via object-focused, multi-objective sarsa. In: 2018 Annual American Control Conference (ACC), pp. 6596–6601. IEEE (2018)

    Google Scholar 

  22. Sun, Y., Song, J., Zhou, S., Guo, X., Niu, Z.: Task replication for vehicular edge computing: a combinatorial multi-armed bandit based approach. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7 (2018). https://doi.org/10.1109/GLOCOM.2018.8647564

  23. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1988)

    Google Scholar 

  24. Wang, J., Feng, D., Zhang, S., Tang, J., Quek, T.Q.S.: Computation offloading for mobile edge computing enabled vehicular networks. IEEE Access 7, 62624–62632 (2019). https://doi.org/10.1109/ACCESS.2019.2915959

    Article  Google Scholar 

  25. Xiaoping, D., Dongxin, L., Shen, L., Qiqige, W., Wenbo, C.: Coordinated control algorithm at non-recurrent freeway bottlenecks for intelligent and connected vehicles. IEEE Access 8, 51621–51633 (2020). https://doi.org/10.1109/ACCESS.2020.2980626

    Article  Google Scholar 

  26. Xu, X., Zhang, X., Liu, X., Jiang, J., Qi, L., Bhuiyan, M.Z.A.: Adaptive computation offloading with edge for 5g-envisioned internet of connected vehicles. IEEE Trans. Intell. Transp. Syst. 22(8), 5213–5222 (2021). https://doi.org/10.1109/TITS.2020.2982186

    Article  Google Scholar 

  27. Zeng, F., Chen, Q., Meng, L., Wu, J.: Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing. IEEE Trans. Intell. Transp. Syst. 22(6), 3247–3257 (2021). https://doi.org/10.1109/TITS.2020.2980422

    Article  Google Scholar 

  28. Zhan, W., et al.: Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing. IEEE Internet Things J. 7(6), 5449–5465 (2020). https://doi.org/10.1109/JIOT.2020.2978830

    Article  Google Scholar 

  29. Zhao, J., Li, Q., Gong, Y., Zhang, K.: Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Trans. Veh. Technol. 68(8), 7944–7956 (2019). https://doi.org/10.1109/TVT.2019.2917890

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, K., Lin, B., Shao, X. (2022). Reinforcement Learning-Based Computation Offloading Approach in VEC. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2021. Communications in Computer and Information Science, vol 1491. Springer, Singapore. https://doi.org/10.1007/978-981-19-4546-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4546-5_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4545-8

  • Online ISBN: 978-981-19-4546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics