Skip to main content

Organic–Inorganic Nanohybrid-Based Electrochemical Biosensors

  • Chapter
  • First Online:
Hybrid Nanomaterials

Abstract

Biosensor is an emerging class of sensors that received much attention due to their wide range of applications. These are interpretative appliances that translate a biochemical reaction into an electric signal. The biomolecule is used as a recognition and sensing element to recognize and quantify the analyte of interest in a catalytic or binding event. The interaction between the biomolecule and the analyte produces an electrical response monitored by transducer in the form of signal. The sensitivity and selectivity of biosensors are based on the biomolecule, and these properties of biosensors can be further enhanced by appropriate modifications. The immobilization of biosensing element onto the host substrate offered improved characteristics to resulted modified material and biosensors. The inorganic substrate has particular properties like high mechanical and thermal strength, while organic substrate provides high electron transfer properties and conductivities. The combination of organic and inorganic materials in the form of hybrids is emerged as an efficient material as a substrate to immobilization the biomolecules and could offer the combined characteristics of organic and inorganic materials that are not possible otherwise. The properties could be further enhanced by preparing these hybrid materials on nanoscale due to high surface and improved activity. Specifically, the name biosensor is given on the basis of bioelement present in its structure and working of transducer. Electrochemical biosensors are those which changes the biochemical reaction into electrical signal. In this chapter, we mainly discussed biosensors, classification of biosensors, organic and inorganic substrate used for biosensors, organic–inorganic nanohybrid as a substrate, organic–inorganic nanohybrids as recognition element in electrochemical biosensing, immobilization of biomolecules and applications of biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shakeel A et al (2022) Advanced polymeric/inorganic nanohybrids: an integrated platform for gas sensing applications. Chemosphere 294:133772

    Article  CAS  Google Scholar 

  2. Gomez J (2021) Analog and digital control of graphene field effect transistor sensors with the Raspberry Pi. University of Washington

    Google Scholar 

  3. Javaid M et al (2021) Sensors for daily life: a review. Sens Int 100121

    Google Scholar 

  4. Salim GM et al (2015) Optimal light power consumption using LDR sensor. In: 2015 IEEE international symposium on robotics and intelligent sensors (IRIS). IEEE

    Google Scholar 

  5. Asal M et al (2018) Recent developments in enzyme, DNA and immuno-based biosensors. Sensors 18(6):1924

    Article  Google Scholar 

  6. Gao H et al (2020) Application of microfluidic chip technology in food safety sensing. Sensors 20(6):1792

    Article  CAS  Google Scholar 

  7. Gheorghiu M (2021) A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis. J Biomed Res 35(4):255

    Article  Google Scholar 

  8. Mandal PK et al (2021) Bacteriophage infection of Escherichia coli leads to the formation of membrane vesicles via both explosive cell lysis and membrane blebbing. Microbiology 167(4):001021

    Article  CAS  Google Scholar 

  9. Aliakbar Ahovan Z et al (2020) Bacteriophage based biosensors: trends, outcomes and challenges. Nanomaterials 10(3):501

    Article  Google Scholar 

  10. Grimes CA et al (2002) Wireless magnetoelastic resonance sensors: a critical review. Sensors 2(7):294–313

    Article  CAS  Google Scholar 

  11. Li S et al (2010) Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens Bioelectron 26(4):1313–1319

    Article  CAS  Google Scholar 

  12. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60(1):91–100

    Article  Google Scholar 

  13. Grieshaber D et al (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8(3):1400–1458

    Article  CAS  Google Scholar 

  14. Baron R, Saffell J (2017) Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: a review. ACS Sens 2(11):1553–1566

    Article  CAS  Google Scholar 

  15. Sakata T et al (2007) Stable immobilization of an oligonucleotide probe on a gold substrate using tripodal thiol derivatives. Langmuir 23(5):2269–2272

    Article  CAS  Google Scholar 

  16. Raymakers J, Haenen K, Maes W (2019) Diamond surface functionalization: from gemstone to photoelectrochemical applications. J Mater Chem C 7(33):10134–10165

    Article  CAS  Google Scholar 

  17. Migneault I et al (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37(5):790–802

    Article  CAS  Google Scholar 

  18. Shetti NP et al (2019) Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf B 178:385–394

    Article  CAS  Google Scholar 

  19. Futera Z, Blumberger J (2018) Adsorption of amino acids on gold: assessing the accuracy of the GolP-CHARMM force field and parametrization of Au–S bonds. J Chem Theory Comput 15(1):613–624

    Article  Google Scholar 

  20. Fopase R et al (2020) Strategies, challenges and opportunities of enzyme immobilization on porous silicon for biosensing applications. J Environ Chem Eng 104266

    Google Scholar 

  21. Dief EM et al (2020) Covalent linkages of molecules and proteins to Si–H surfaces formed by disulfide reduction. Langmuir 36(49):14999–15009

    Article  CAS  Google Scholar 

  22. Suni II (2021) Substrate materials for biomolecular immobilization within electrochemical biosensors. Biosensors 11(7):239

    Article  CAS  Google Scholar 

  23. Aydın EB, Sezgintürk MK (2017) Indium tin oxide (ITO): a promising material in biosensing technology. TrAC Trends Anal Chem 97:309–315

    Article  Google Scholar 

  24. Morges W Protein-modified electrodes. The glucose oxidase/polypyrrole system

    Google Scholar 

  25. Swamy NK, Sandeep S, Santhosh A (2017) Conductive polymers and their nanohybrid transducers for electrochemical biosensors applications: a brief review. Indian J Adv Chem Sci S2:6–9

    Google Scholar 

  26. Rahman M et al (2008) Electrochemical sensors based on organic conjugated polymers. Sensors 8(1):118–141

    Article  CAS  Google Scholar 

  27. Rahman MA, Won MS, Shim YB (2007) Xanthine sensors based on anodic and cathodic detection of enzymatically generated hydrogen peroxide. Electroanalysis: Int J Devot Fundam Pract Asp Electroanal 19(6):631–637

    Google Scholar 

  28. Darain F et al (2007) Superoxide radical sensing using a cytochrome c3 immobilized conducting polymer electrode. Biosens Bioelectron 23(2):161–167

    Article  CAS  Google Scholar 

  29. Kang X et al (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905

    Article  CAS  Google Scholar 

  30. Wang J, Musameh M (2005) Carbon-nanotubes doped polypyrrole glucose biosensor. Anal Chim Acta 539(1–2):209–213

    Article  CAS  Google Scholar 

  31. He P, Dai L (2004) Aligned carbon nanotube–DNA electrochemical sensors. Chem Commun 3:348–349

    Article  Google Scholar 

  32. Baur J et al (2010) Immobilization of biotinylated biomolecules onto electropolymerized poly (pyrrole-nitrilotriacetic acid)–Cu2+ film. Electrochem Commun 12(10):1287–1290

    Article  CAS  Google Scholar 

  33. Ameer Q, Adeloju (SB) Galvanostatic entrapment of sulfite oxidase into ultrathin polypyrrole films for improved amperometric biosensing of sulfite. Electroanalysis: Int J Devot Fundam Pract Asp Electroanal 20(23):2549–2556

    Google Scholar 

  34. Deo RP et al (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530(2):185–189

    Article  CAS  Google Scholar 

  35. Karpova EV et al (2019) Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Anal Chem 91(6):3778–3783

    Article  CAS  Google Scholar 

  36. Bougadi ET, Kalogianni DP (2020) Paper-based DNA biosensor for food authenticity testing. Food Chem 322:126758

    Article  CAS  Google Scholar 

  37. Schneider E, Clark DS (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron 39(1):1–13

    Article  CAS  Google Scholar 

  38. Wang H, Nakata E, Hamachi I (2009) Recent progress in strategies for the creation of protein-based fluorescent biosensors. ChemBioChem 10(16):2560–2577

    Article  CAS  Google Scholar 

  39. Chee G-J et al (2000) Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosens Bioelectron 15(7–8):371–376

    Article  CAS  Google Scholar 

  40. Manatunga DC et al (2020) Recent developments in the use of organic–inorganic nanohybrids for drug delivery. Wiley Interdiscipl Rev: Nanomed Nanobiotechnol 12(3):e1605

    Google Scholar 

  41. Wang S et al (2013) Organic/inorganic hybrid sensors: a review. Sens Actuators B Chem 182:467–481

    Article  CAS  Google Scholar 

  42. Njagi J, Andreescu S (2007) Stable enzyme biosensors based on chemically synthesized Au–polypyrrole nanocomposites. Biosens Bioelectron 23(2):168–175

    Article  CAS  Google Scholar 

  43. Qiao Z et al (2018) Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coord Chem Rev 372:31–51

    Article  CAS  Google Scholar 

  44. Son WK et al (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  CAS  Google Scholar 

  45. Macanás J et al (2006) Preparation and characterization of polymer‐stabilized metal nanoparticles for sensor applications. Phys Status Solidi (a) 203(6):1194–1200

    Google Scholar 

  46. Park SJ et al (2014) Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. Sensors 14(2):3604–3630

    Article  CAS  Google Scholar 

  47. Li J et al (2012) Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes. Microchim Acta 176(1):73–80

    Article  CAS  Google Scholar 

  48. Fathy SA et al (2018) Tyrosinase biosensor based on multiwall carbon nanotubes-titanium oxide nanocomposite for catechol determination. Desalin Water Treat 130:98–108

    Article  CAS  Google Scholar 

  49. Cheng Y et al (2009) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim Acta 54(9):2588–2594

    Article  CAS  Google Scholar 

  50. Zhang T et al (2003) A sensitive mediator-free tyrosinase biosensor based on an inorganic–organic hybrid titania sol–gel matrix. Anal Chim Acta 489(2):199–206

    Article  CAS  Google Scholar 

  51. Al-Mokaram A et al (2017) The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole–chitosan–titanium dioxide nanocomposite films. Nanomaterials 7(6):129

    Article  Google Scholar 

  52. German N et al (2012) Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer. Colloids Surf A 413:224–230

    Article  CAS  Google Scholar 

  53. Mohd Yazid SNA et al (2014) A review of glucose biosensors based on graphene/metal oxide nanomaterials. Anal Lett 47(11):1821–1834

    Google Scholar 

  54. Choi HN, Kim MA, Lee W-Y (2005) Amperometric glucose biosensor based on sol–gel-derived metal oxide/Nafion composite films. Anal Chim Acta 537(1–2):179–187

    Article  CAS  Google Scholar 

  55. Bhardwaj T (2014) A review on immobilization techniques of biosensors. Int J Eng Res 3(5)

    Google Scholar 

  56. Minikh O et al (2010) Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli. J Microbiol Methods 82(2):177–183

    Article  CAS  Google Scholar 

  57. Gupta R, Chaudhury N (2007) Entrapment of biomolecules in sol–gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22(11):2387–2399

    Article  CAS  Google Scholar 

  58. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511

    Article  CAS  Google Scholar 

  59. Kumar AKS et al (2020) A mini-review: how reliable is the drop casting technique? Electrochem Commun 121:106867

    Article  Google Scholar 

  60. Ivnitski D et al (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis: Int J Devot Fundam Pract Asp Electroanal 12(5):317–325

    Google Scholar 

  61. Gupta R et al (2021) Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J Hazard Mater 401:123379

    Article  CAS  Google Scholar 

  62. Naqvi SAR et al (2021) Nanotechnology: a smart translation of ingredients in the agriculture industry. Aquananotechnology. Elsevier, pp 37–55

    Google Scholar 

  63. Marrazza G, Chianella I, Mascini M (1999) Disposable DNA electrochemical biosensors for environmental monitoring. Anal Chim Acta 387(3):297–307

    Article  CAS  Google Scholar 

  64. Rizwan K et al (2022) MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. Chemosphere 291:132820

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tauqir A. Sherazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batool, A., Sherazi, T.A., Naqvi, S.A.R. (2022). Organic–Inorganic Nanohybrid-Based Electrochemical Biosensors. In: Rizwan, K., Bilal, M., Rasheed, T., Nguyen, T.A. (eds) Hybrid Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4538-0_8

Download citation

Publish with us

Policies and ethics