Skip to main content

Magnetic Ordering in a System of Identical Particles with Arbitrary Spin

  • Chapter
  • First Online:
Quantum Science

Abstract

The Wigner–Eckart theorem is used to consider collective effects associated with the ordering of spins in systems of identical particles in Ferro- and antiferromagnetic electronic systems, as well as magnetic effects arising in high-spin systems. The Hamiltonian obtained by Heisenberg, Dirac, and Van Vleck was written in the spin representation used to describe spin ordering in systems of particles with spin 1/2. This form is not suitable for describing systems of particles with a spin other than 1/2. “High-spin” particles in the spin representation should be described by other forms of the exchange interaction Hamiltonian in the spin representation. The Hamiltonian for high-spin particles is derived from the first principles. This chapter discusses the effects of magnetic ordering in systems of identical particles with arbitrary spin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckart C (1930) The application of group theory to the quantum dynamics of monatomic systems. Rev Mod Phys 2:305–380

    Article  ADS  Google Scholar 

  2. Varshalovich DA, Moskalev AN, Khersonskiy VK (1988) The quantum theory of angular momentum. World Scientific, Singapore, pp 15–54

    Book  Google Scholar 

  3. Dirac PAM (1926) On the theory of quantum mechanics. Proc Roy Soc A 112:661

    ADS  MATH  Google Scholar 

  4. Heisenberg W (1926) Mehrkörperproblem und Resonanz in der Quantenmechanik. Z Phys 38:411–426

    Article  ADS  Google Scholar 

  5. Van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Oxford, University Press, 384

    Google Scholar 

  6. Ho TL, Yip SK (2000) Fragmented and single condensate ground states of Spin-1 bose gas. Phys Rev Lett 84:4027–4030

    Article  ADS  Google Scholar 

  7. Ho T-L (1998) Bose-Einstein condensate in optical traps. Phys Rev Lett 81:742–745

    Article  ADS  Google Scholar 

  8. Ohmi T, Machida K (1998) Bose-Einstein condensation with internal degrees of freedom in Alkali atom gases. J Phys Soc Jpn 67:1822–1825

    Article  ADS  Google Scholar 

  9. Ciobanu CV, Yip S-K, Ho T-L (2000) Phase diagrams of F=2 spinor Bose-Einstein condensates. Phys Rev A 61:1050–1056

    Article  Google Scholar 

  10. Anderson MH, Ensher JR, Matteus MR, Wieman CE, Cornell EA (1995) Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(1):198–205

    Google Scholar 

  11. Bradley CC, Sackett CA, Hulet RG (1995) Evidence of Bose-Einstein in an atomic gas with attractive interactions. Phys Rev Lett 75(9): 1687–1694

    Google Scholar 

  12. De.Marko B, Jin DS (1999) Onset of Fermi degeneracy in a trapped atomic gas. Science 285:1703–1705

    Google Scholar 

  13. Inouye S (1998) Nature 392(1): 151; Lubkin GB (1999) Bose condensates produce coherent nonlinear behavior. Phys Today 52(9): 17–19

    Google Scholar 

  14. Coureille Ph, Freeland RS, Heinzen DJ, van Abeelen FA, Verhaar BJ (1998) Observation of a Feshbach resonanse in cold atom scattering. Phys Rev Lett 81(1): 69–76

    Google Scholar 

  15. Roberts JL, Claussen NR, Burke JP, Green CH, Cornell EA, Wieman CE (1998) Resonant magnetic field control of elastic scattering in cold R 85. Phys Rev Lett 81(23):5109–5112

    Google Scholar 

  16. Vuletic V, Kerman AJ, Chin C, Chu S (1999) Observation of low-field resonance in collisions of cesium atoms. Phys Rev Lett 82(7): 1406–1409

    Google Scholar 

  17. Schneider J, Wallis H (1998) Mesoscopic Fermi gas in a harmonic trap. Phys Rev A 57(2):1253–1259

    Google Scholar 

  18. Bruun GM, Burnet K (1998) Interacting Fermi gas in a harmonic trap. Phys Rev A 58(3):2427–2434

    Google Scholar 

  19. Koelman JMVA, Stoof HTC, Verhaar BJ, Walraven JTM (1987) Spin-polarized deuterium in magnetic traps. Phys Rev Lett 59(3):676–679

    Google Scholar 

  20. Ferari G (1999) Collisional relaxation in a fermionic gas. Phys Rev A 59(6):R4125–4128

    Google Scholar 

  21. Orlenko E, Matisov B, Mazets I (2003) Nonlinear magnetic phenomena in atomic bose gas. Tech Phys 48(1):26–30. https://doi.org/10.1134/1.1538722

  22. Mazets IE, Orlenko EV, Matisov BG (2002) Nonlinearity effects in wave propagation in multicomponent Bose-Einstein condensates. J Exp Theor Phys 95(2):221–225

    Google Scholar 

  23. Orlenko EV, Matisov BG, Ketiladze GT (2001) Magnetic properties of degenerate atomic fermi gases. Tech Phys 46(12):1494–1500

    Google Scholar 

  24. Haldane FDM (1983) Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis néel state. Phys Rev Lett 50:1153–1156

    Article  ADS  MathSciNet  Google Scholar 

  25. Haldane F (1983) Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys Lett A 93:464–468

    Article  ADS  MathSciNet  Google Scholar 

  26. Tasaki H, Affleck I, Kennedy T, Lieb EH (1987) Rigorous results on valence-bond ground states in antiferromagnets. Phys Rev Lett 59:799–802

    Article  ADS  Google Scholar 

  27. Albuquerque AF, Hamer CJ, Oitmaa J (2009) Quantum phase diagram and excitations for the one-dimensional S=1 Heisenber antiferromagnet with single-ion anisotropy. Phys Rev B 79:054412

    Article  ADS  Google Scholar 

  28. Schollwöck U, Jolicoeur T, Garel T (1996) Onset of incommensurability at the valence-bond-solid point in the S51 quantum spin chain. Phys Rev B 53:3304–3311

    Article  ADS  Google Scholar 

  29. Robertson H P (1929) The uncertainty principle. Phys Rev 34(1):163–64. https://doi.org/10.1103/PhysRev.34.163

  30. Schrödinger E (1930) Zum Heisenbergschen Un-schärfeprinzip Sitzungsberichte der Preussischen Akademie der Wis-senschaften. Physikalisch-mathematische Klasse 14:296–303

    Google Scholar 

  31. Landau LD, Lifshitz EM (1977) Quantum mechanics: non-relativistic theory. Vol 3 (3rd ed). Pergamon Press. ISBN 978-0-08-020940-1

    Google Scholar 

  32. Orlenko E (2007) The universal Hamiltonian of the exchange interaction for system of particles with an arbitrary spin j. Int J Quantum Chem 107:2838–2843

    Article  ADS  Google Scholar 

  33. Orlenko EV (2016) Magnetic states of an isotropic magnet with the “large” ion spin S = 3/2. Phys Solid State 58:1384–1392

    Article  ADS  Google Scholar 

  34. Orlenko EV, Orlenko FE, Zegrya GG (2010) Excitations for the one-dimensional S=1 pseudo-Heisenberg antiferromagnetic chain. Nat Sci 2(11): 211155–211159

    Google Scholar 

  35. Orlenko FE, Zegrya GG, Orlenko EV (2012) Heisenberg-Dirac-van Vleck vector model for A 1D antiferromagnetic chain of localized spins S = 1. Tech Phy 57(2):167–173

    Google Scholar 

  36. Лифшиц EM (1978) Л.П. Питaeвcкий. Cтaтиcтичecкaя физикa, чacть 2 (1978) M: Hayкa. 447 c

    Google Scholar 

  37. Christodoulides DN (1988) Black and white vector solitons in weakly birefringeht optical fibers. Phys Lett A 132(8):451–452

    Google Scholar 

  38. Zakharov VE, Manakov SV, Zakharov VE, Manakov SV (1974) On the complete integrability of a nonlinear Schrödinger equation. TMF 19(3):332–343; Theoret Math Phys 19(3):551–559

    Google Scholar 

  39. Manakov SV (1974) Sov Phys JETP 38(2):248–253

    ADS  Google Scholar 

  40. Kosmachev OA, Fridman YuA, Galkina EG, Ivanov BA (2015) J Exp Theor Phys 120(2):281

    Article  ADS  Google Scholar 

  41. Stevens K (1952) Proc Phys Soc, London, Sect A 65:209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ernst Ising Contribution to the Theory of Ferromagnetism 1925 This excerpt of the Hamburg dissertation (1924) was first published in «Zeitschrift für Physik», vol. XXXI, 1925 (received on 9 December 1924).

Corresponding author

Correspondence to E. V. Orlenko .

Editor information

Editors and Affiliations

Ethics declarations

The underlined letters H, J and M represent the same letters of the original text in Old English letterface.

Appendices

Appendix 1: Variational Heisenberg Model for the Spin-1/2 System

A system of identical particles with spins 1/2 is described by the HDV Hamiltonian Eq. (64)

$$\hat{H}_{{{\text{int}} 1/2}} = - \sum\limits_{k < l} {J_{kl} {\hat{\mathbf{s}}}_{k} \cdot {\hat{\mathbf{s}}}_{l} } .$$
(A1)

Suppose each pair of particles has the same coupling constant \(J_{kl} = J\). In the system of N particles, N+ particles have spin “up” and N- - spin “down”. Then average value of spin for each particle is

$$\overline{s} = \frac{1}{2}\frac{{N_{ + } - N_{ - } }}{N},$$
(A2)

or

$$N_{ \pm } = \frac{1}{2}N\left( {1 \pm 2\overline{s}} \right).$$
(A3)

The total energy of interaction in this case is

$$\begin{gathered} \overline{{\hat{H}_{{{\text{int}} 1/2}} }} = - \sum\limits_{k < l} {\overline{{J_{kl} {\hat{\mathbf{s}}}_{k} \cdot {\hat{\mathbf{s}}}_{l} }} } = - J\sum\limits_{k < l} {\overline{{{\hat{\mathbf{s}}}_{k} \cdot {\hat{\mathbf{s}}}_{l} }} } = - J\overline{s}^{2} \frac{{N\left( {N - 1} \right)}}{2}, \hfill \\ C_{N}^{2} = \frac{N!}{{2!\left( {N - 2} \right)!}} = \frac{{N\left( {N - 1} \right)}}{2}. \hfill \\ \end{gathered}$$
(A4)

Then the average energy of interaction per one particle is

$$\overline{\varepsilon }_{{\text{int}}} = - J\overline{s}^{2} \frac{{\left( {N - 1} \right)}}{2} \approx - \frac{J}{2}\overline{s}^{2} N.$$
(A5)

We used here that N >> 1.

The statistical sum of such state with the energy \(\overline{\varepsilon }_{{\text{int}}}\) per particle is

$$z = \frac{N!}{{N_{ + } !N_{ - } !}}e^{{ - \overline{\varepsilon }_{{\text{int}}} /T}} = \frac{N!}{{N_{ + } !N_{ - } !}}\exp \left( {\frac{{J\overline{s}^{2} N}}{2T}} \right).$$
(A6)

We take the temperature in the energy scale (T = kBTo). The free energy for this case is

$$\begin{gathered} F = - T\ln z = - T\left\{ {N_{ + } \ln \frac{N}{{N_{ + } }} + N_{ - } \ln \frac{N}{{N_{ - } }} + \frac{{J\overline{s}^{2} N}}{2T}} \right\} = \hfill \\ = - T\left\{ {\frac{1}{2}N\left( {1 + 2\overline{s}} \right)\ln \frac{N}{{\frac{1}{2}N\left( {1 + 2\overline{s}} \right)}} + } \right. \hfill \\ + \left. {\frac{1}{2}N\left( {1 - 2\overline{s}} \right)\ln \frac{N}{{\frac{1}{2}N\left( {1 - 2\overline{s}} \right)}} + \frac{{J\overline{s}^{2} N}}{2T}} \right\} = \hfill \\ = - TN\left\{ { - \frac{{\left( {1 + 2\overline{s}} \right)}}{2}\ln \frac{{\left( {1 + 2\overline{s}} \right)}}{2} - \frac{{\left( {1 - 2\overline{s}} \right)}}{2}\ln \frac{{\left( {1 - 2\overline{s}} \right)}}{2} + \frac{{J\overline{s}^{2} }}{2T}} \right\}. \hfill \\ \end{gathered}$$
(A7)

The Stirling formula was used for the factor representation:

$$\begin{gathered} N! \approx \sqrt {2\pi N} \left( \frac{N}{e} \right)^{N} , \hfill \\ \ln N! \approx \frac{1}{2}\ln \left( {2\pi N} \right) + \left( {N\ln N - N} \right) = \left( {N\ln N - N} \right), \hfill \\ \frac{1}{2}\ln \left( {2\pi N} \right) \ll N. \hfill \\ \end{gathered}$$
(A8)

To find the optimal value of the mean spin, \(\overline{s}\), we take the derivative of the free energy F, defined in (A7), with respect to \(\overline{s}\).

$$\begin{gathered} \frac{\partial }{{\partial \overline{s}}}F = - TN\left\{ { - \ln \frac{{\left( {1 + 2\overline{s}} \right)}}{2} - 1 + \ln \frac{{\left( {1 - 2\overline{s}} \right)}}{2} + 1 + \frac{{J\overline{s}}}{T}} \right\} = 0, \Rightarrow \hfill \\ \ln \left( {\frac{{1 - 2\overline{s}}}{{1 + 2\overline{s}}}} \right) + \frac{{J\overline{s}}}{T} = 0, \hfill \\ \left( {\frac{{1 + 2\overline{s}}}{{1 - 2\overline{s}}}} \right) = e^{{\frac{{J\overline{s}}}{T}}} , \Rightarrow \hfill \\ 2\overline{s} = \frac{{e^{{\frac{{J\overline{s}}}{T}}} - 1}}{{e^{{\frac{{J\overline{s}}}{T}}} + 1}}, \Rightarrow \hfill \\ \end{gathered}$$
(A9)

We come to the following transcendental equation for \(\overline{s}\).

$$2\overline{s} = \tanh \left( {\frac{{J\overline{s}}}{2T}} \right),$$
(A10)

or in the form

$$\left( {2\overline{s}} \right) = \tanh \left( {\frac{{J\left( {2\overline{s}} \right)}}{4T}} \right).$$
(A11)

The possible solutions to the equation Eq. (A11) are shown in Fig. 4. It is clear that in the case of parameter \(\frac{J}{4T} > 1\), the equation has a nontrivial solution for \(\left( {2\overline{s}} \right)\), which means the excitation of the spontaneous polarization in the system with the total spin \(\Sigma = N\overline{s}\) (It is shown in Fig. 4a). The case b) shows the absence of the spontaneous spin polarization in the system (the parameter \(\frac{J}{4T} < 1\). The case c) on the picture shows a state which is close to the phase transformation in the spin system. It means that the critical temperature of the phase transition is \(T* = \frac{J}{4}\). It is a second-order phase transition from paramagnetic to ferromagnetic state.

Fig. 4
Three graphs plot the functions y equals tan h of J of 2 s bar over 4 T and f equals 2 s bar for the parameters J over 4 T equals 2, 0.9, and 1.1.

Graphs of the functions \(Y = \tanh \left( {\frac{{J\left( {2\overline{s}} \right)}}{4T}} \right)\), \(f = \left( {2\overline{s}} \right)\) and their intersections as a solution to the transcendental equation (A11). The case (a) the parameter \(\frac{J}{4T} = 2\), the case (b) the parameter \(\frac{J}{4T} = 0.9\), and (c) the parameter \(\frac{J}{4T} = 1.1\)

Appendix 2: Ising Model for the Spin-1/2 Chain

We consider a spin chain in the magnetic field. HDV Hamiltonian with respect to the interaction of eigen magnetic momentums of spin-1/2 particles has the form

$$\hat{H}_{{{\text{int}} 1/2}} = - \sum\limits_{k < l} {J_{kl} {\hat{\mathbf{s}}}_{k} \cdot {\hat{\mathbf{s}}}_{l} } - 2\mu_{B} {\mathbf{H}} \cdot \sum\limits_{k} {{\hat{\mathbf{s}}}_{k} } ,$$
(A12)

where \({\mathbf{H}}\) is a magnetic field strength.

As it was shown in Eq. (35)

$$\left( {\widehat{{{\mathbf{j}}_{1} }} \cdot \widehat{{{\mathbf{j}}_{2} }}} \right) = \frac{1}{2}\left( {\widehat{{j_{1}^{ + } }}\widehat{{j_{2}^{ - } }} + \widehat{{j_{1}^{ - } }}\widehat{{j_{2}^{ + } }} + 2\widehat{{j_{1z} }}\widehat{{j_{2z} }}} \right) \to \widehat{{j_{1z} }}\widehat{{j_{2z} }},$$

In this model (Ising Model), the first two terms are neglected. In the nearest-neighbor case (with periodic or free boundary conditions), an exact solution is available. The Hamiltonian of the one-dimensional Ising model on a lattice of L sites with periodic boundary conditions is

$$\begin{gathered} \hat{H}_{I\sin g} = - \sum\limits_{k} {J_{kk + 1} \hat{s}_{zk} \hat{s}_{zk + 1} } - 2\mu_{B} H \cdot \sum\limits_{k} {\hat{s}_{zk} } = \hfill \\ = - J\sum\limits_{k} {\hat{\sigma }_{zk} \hat{\sigma }_{zk + 1} } - \mu_{B} H \cdot \sum\limits_{k} {\hat{\sigma }_{zk} } , \hfill \\ \end{gathered}$$
(A13)

where \(\hat{\sigma }_{zk}\)-are Pauli matrix for k-th spin projection on the z-axis, \(J_{kk + 1} = 4J\).

$$\begin{gathered} \hat{H}_{I\sin g} = - J\sum\limits_{k} {\hat{\sigma }_{zk} \hat{\sigma }_{zk + 1} } - \mu_{B} H \cdot \sum\limits_{k} {\hat{\sigma }_{zk} } = \hfill \\ = \left( { - J\hat{\sigma }_{z1} \hat{\sigma }_{z2} - \frac{{\mu_{B} H}}{2}\left( {\hat{\sigma }_{z1} + \hat{\sigma }_{z2} } \right)} \right) + \hfill \\ + \left( { - J\hat{\sigma }_{z2} \hat{\sigma }_{z3} - \frac{{\mu_{B} H}}{2}\left( {\hat{\sigma }_{z2} + \hat{\sigma }_{z3} } \right)} \right) + \hfill \\ + ... + \left( { - J\hat{\sigma }_{zN} \hat{\sigma }_{z1} - \frac{{\mu_{B} H}}{2}\left( {\hat{\sigma }_{zN} + \hat{\sigma }_{z1} } \right)} \right). \hfill \\ \end{gathered}$$
(A14)

Statistical sum z is

$$\begin{gathered} z = Sp\exp \left( { - \frac{{\hat{H}_{I\sin g} }}{T}} \right) = \hfill \\ = Sp\left\{ {e^{{\frac{{2J\hat{\sigma }_{z1} \hat{\sigma }_{z2} + \mu_{B} H\left( {\hat{\sigma }_{z1} + \hat{\sigma }_{z2} } \right)}}{2T}}} \cdot e^{{\frac{{2J\hat{\sigma }_{z2} \hat{\sigma }_{z3} + \mu_{B} H\left( {\hat{\sigma }_{z2} + \hat{\sigma }_{z3} } \right)}}{2T}}} \cdot ... \cdot e^{{\frac{{2J\hat{\sigma }_{zN} \hat{\sigma }_{z1} + \mu_{B} H\left( {\hat{\sigma }_{zN} + \hat{\sigma }_{z1} } \right)}}{2T}}} } \right\} = \hfill \\ = Sp\hat{V}_{12} \hat{V}_{23} ...\hat{V}_{N1} , \hfill \\ \hat{V}_{kk + 1} = e^{{\frac{{2J\hat{\sigma }_{zk} \hat{\sigma }_{zk + 1} + \mu_{B} H\left( {\hat{\sigma }_{zk} + \hat{\sigma }_{zk + 1} } \right)}}{2T}}} = \left( {\begin{array}{*{20}c} {e^{{\frac{{J + \mu_{B} H}}{T}}} } & {e^{{ - \frac{J}{T}}} } \\ {e^{{ - \frac{J}{T}}} } & {e^{{\frac{{J - \mu_{B} H}}{T}}} } \\ \end{array} } \right). \hfill \\ \end{gathered}$$
(A15)

A diagonalization of the operator \(\hat{V}_{kk + 1}\) gives the following:

$$\begin{gathered} \left| {\begin{array}{*{20}c} {e^{{\frac{{J + \mu_{B} H}}{T}}} - \lambda } & {e^{{ - \frac{J}{T}}} } \\ {e^{{ - \frac{J}{T}}} } & {e^{{\frac{{J - \mu_{B} H}}{T}}} - \lambda } \\ \end{array} } \right| = 0, \Rightarrow \hfill \\ \lambda^{2} - \lambda e^{\frac{J}{T}} 2\cosh \left( {\frac{{\mu_{B} H}}{T}} \right) + 2\sinh \left( \frac{2J}{T} \right) = 0, \hfill \\ \lambda_{1,2} = e^{\frac{J}{T}} \cosh \left( {\frac{{\mu_{B} H}}{T}} \right) \pm \sqrt {e^{\frac{2J}{T}} \left( {\cosh \left( {\frac{{\mu_{B} H}}{T}} \right)} \right)^{2} - 2\sinh \left( \frac{2J}{T} \right)} , \hfill \\ \hat{V}_{kk + 1} = \left( {\begin{array}{*{20}c} {e^{{\frac{{J + \mu_{B} H}}{T}}} } & {e^{{ - \frac{J}{T}}} } \\ {e^{{ - \frac{J}{T}}} } & {e^{{\frac{{J - \mu_{B} H}}{T}}} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\lambda_{1} } & 0 \\ 0 & {\lambda_{2} } \\ \end{array} } \right). \hfill \\ \end{gathered}$$
(A16)

Therefore, that statistical sum z will have a form

$$z = Sp\hat{V}_{12} \hat{V}_{23} ...\hat{V}_{N1} = Sp\left( {\begin{array}{*{20}c} {\lambda_{1}^{N} } & 0 \\ 0 & {\lambda_{2}^{N} } \\ \end{array} } \right) = \lambda_{1}^{N} + \lambda_{2}^{N} .$$
(A17)

λ1 is the highest eigenvalue of V, while λ2 is the other eigenvalue and |λ2| < λ1. This gives the formula of the free energy.

$$\begin{gathered} F = - TN\ln \lambda_{1} = \hfill \\ = - TN\ln \left\{ {e^{\frac{J}{T}} \cosh \left( {\frac{{\mu_{B} \mathscr{H}}}{T}} \right) + \sqrt {e^{\frac{2J}{T}} \left( {\cosh \left( {\frac{{\mu_{B} \mathscr{H}}}{T}} \right)} \right)^{2} - 2\sinh \left( \frac{2J}{T} \right)} } \right\} = \hfill \\ = - TN\ln \left\{ {e^{\frac{J}{T}} \cosh \left( {\frac{{\mu_{B} \mathscr{H}}}{T}} \right) + e^{\frac{J}{T}} \sqrt {\left( {\cosh \left( {\frac{{\mu_{B} \mathscr{H}}}{T}} \right)} \right)^{2} - 2\left( {1 - e^{{ - \frac{4J}{T}}} } \right)} } \right\} = \hfill \\ = - NT\left\{ {\frac{J}{T} + \ln \left\{ {\cosh \left( {\frac{{\mu_{B} \mathscr{H}}}{T}} \right) + \sqrt {\left( {\cosh \left( {\frac{{\mu_{B} \mathscr{H}}}{T}} \right)} \right)^{2} - 2\left( {1 - e^{{ - \frac{4J}{T}}} } \right)} } \right\}} \right\}, \hfill \\ \end{gathered}$$
(A18)
$$\begin{gathered} - NT\left\{ {\frac{J}{T} + \ln \left\{ {\cosh \left( {\frac{{\mu_{B} H}}{T}} \right) + \sqrt {\left( {\cosh \left( {\frac{{\mu_{B} H}}{T}} \right)} \right)^{2} - 2\left( {1 - e^{{ - \frac{4J}{T}}} } \right)} } \right\}} \right\}, \hfill \\ M = - \frac{\partial F}{{\partial H}} = NT\frac{{\mu_{B} }}{T}\frac{{\sinh \left( {\frac{{\mu_{B} H}}{T}} \right) + \frac{{2\cosh \left( {\frac{{\mu_{B} H}}{T}} \right)\sinh \left( {\frac{{\mu_{B} H}}{T}} \right)}}{{2\sqrt {\left( {\cosh \left( {\frac{{\mu_{B} H}}{T}} \right)} \right)^{2} - 2\left( {1 - e^{{ - \frac{4J}{T}}} } \right)} }}}}{{\left\{ {\cosh \left( {\frac{{\mu_{B} H}}{T}} \right) + \sqrt {\left( {\cosh \left( {\frac{{\mu_{B} H}}{T}} \right)} \right)^{2} - 2\left( {1 - e^{{ - \frac{4J}{T}}} } \right)} } \right\}}}, \hfill \\ \mathop {Lim}\limits_{H \to 0} M = N\mu_{B} \sinh \left( 0 \right)\frac{{1 + \frac{1}{{\sqrt {1^{2} - 2\left( {1 - e^{{ - \frac{4J}{T}}} } \right)} }}}}{{\left\{ {1 + \sqrt {1^{2} - 2\left( {1 - e^{{ - \frac{4J}{T}}} } \right)} } \right\}}} \to 0. \hfill \\ \end{gathered}$$
(A19)

In the one-dimensional Ising model, there is no remnant magnetization. Spontaneous spin polarization does not occur.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlenko, E.V., Khersonsky, V.K., Orlenko, F.E. (2022). Magnetic Ordering in a System of Identical Particles with Arbitrary Spin. In: Onishi, T. (eds) Quantum Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-4421-5_7

Download citation

Publish with us

Policies and ethics