Skip to main content

Plant–Microbe Associations in Remediation of Contaminants for Environmental Sustainability

  • Chapter
  • First Online:
Omics Insights in Environmental Bioremediation

Abstract

Pollutants are the substances that lead to undesired effects on the environment and pose a threat to all forms of life. The accumulation of these pollutants in the environment causes several diseases which affect both human and animal health. Several methods are implemented to degrade contaminants among which better results are obtained for the bioremediation technique. Plants and microbes are trappers of contaminants and they remove pollutants from the environment in an effective way. When both microorganisms and plants are combined, they showed an increase in their reduction activity compared to other remediation methods. Plant-associated microbes such as endophytes and rhizospheric microorganisms are utilised in the remediation of toxic compounds and are also used to enhance the treatment process. Thus, plant-associated microbes are considered as a promising approach in the remediation of contaminants. A broad knowledge about plant–microbe interactions and the challenges faced during remediation process is more important for the development of new technologies to remove various contaminants. This chapter highlights the need for plant microbes and how they play a vital role in the remediation of contaminants. More approaches should be implemented using plant microbes for the betterment of polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186(2–3):1568–1575

    Article  CAS  Google Scholar 

  • Agrawal N, Kumar V, Shahi SK (2021) Biodegradation and detoxification of phenanthrene in in-vitro and in-vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization of their metabolites for environmental safety. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15271-w

  • Al-Baldawi IA, Abdullah SRS, Anuar N, Suja F, Mushrifah I (2015) Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol Eng 74:463–473

    Article  Google Scholar 

  • Alotaibi F, Hijri M, St-Arnaud M (2021) Overview of approaches to improve rhizoremediation of petroleum hydrocarbon-contaminated soils. Appl Microbiol 1(2):329–351

    Article  Google Scholar 

  • Appannagari RR (2017) Environmental pollution causes and consequences: a study. North Asian Int Res J Soc Sci Human 3(8):151–161

    Google Scholar 

  • Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández Á (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210

    Article  CAS  Google Scholar 

  • Chandra R, Kumar V (2017a) Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemicals rich environment of distillery spent wash and its phytotoxicity. Environ Monit Assess 189:26. https://doi.org/10.1007/s10661-016-5746-9

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Kumar V (2017b) Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in-situ bioremediation of post methanated distillery sludge. Front Microbiol 8:87. https://doi.org/10.3389/fmicb.2017.00887

    Article  Google Scholar 

  • Chandra R, Kumar V (2018) Phytoremediation: a green sustainable technology for industrial waste management. In: Chandra R, Dubey N, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton. https://doi.org/10.1201/9781315161549-1

    Chapter  Google Scholar 

  • Chandra R, Dubey NK, Kumar V (2018) Phytoremediation of environmental pollutants. CRC Press, Boca Raton. https://doi.org/10.1201/9781315161549

    Book  Google Scholar 

  • Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413(1–2):203–216

    CAS  Google Scholar 

  • De Mandal S, Singh S, Hussain K, Hussain T (2021) Plant–microbe association for mutual benefits for plant growth and soil health. In: Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 95–121

    Chapter  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15(11):1173–1180

    Article  Google Scholar 

  • Gaur VK, Sharma P, Gaur P, Varjani S, Ngo HH, Guo W, Chaturvedi P, Singhania RR (2021) Sustainable mitigation of heavy metals from effluents: toxicity and fate with recent technological advancements. Bioengineered 12(1):7297–7313

    Article  Google Scholar 

  • Hartmann A, Klink S, Rothballer M (2021) Plant growth promotion and induction of systemic tolerance to drought and salt stress of plants by quorum sensing auto-inducers of the N-acyl-homoserine lactone type: recent developments. Front Plant Sci 12:1026

    Article  Google Scholar 

  • He LY, Zhang YF, Ma HY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44(1):49–55

    Article  Google Scholar 

  • Hu M, Li L (2021) Treatment technology of microbial landscape aquatic plants for water pollution. Adv Mater Sci Eng. 2021

    Google Scholar 

  • Kabra AN, Khandare RV, Govindwar SP (2013) Development of a bioreactor for remediation of textile effluent and dye mixture: a plant–bacterial synergistic strategy. Water Res 47(3):1035–1048

    Article  CAS  Google Scholar 

  • Karnwal A (2017) Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.). J Plant Protect Res

    Google Scholar 

  • Kaul S, Choudhary M, Gupta S, Dhar MK (2021) Engineering host microbiome for crop improvement and sustainable agriculture. Front Microbiol 12:1125

    Article  Google Scholar 

  • Khan Z, Roman D, Kintz T, delas Alas, M., Yap, R. and Doty, S. (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48(20):12221–12228

    Article  CAS  Google Scholar 

  • Khonsue N, Kittisuwan K, Kumsopa A, Tawinteung N, Prapagdee B (2013) Inoculation of soil with cadmium-resistant bacteria enhances cadmium phytoextraction by Vetiveria nemoralis and Ocimum gratissimum. Water Air Soil Pollut 224(10):1–9

    Article  CAS  Google Scholar 

  • Kristanti RA, Toyama T, Hadibarata T, Tanaka Y, Mori K (2014) Sustainable removal of nitrophenols by rhizoremediation using four strains of bacteria and giant duckweed (Spirodela polyrhiza). Water Air Soil Pollut 225(4):1–10

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17(1):6–15

    Article  CAS  Google Scholar 

  • Kumar V (2021) Phytoremediation of distillery effluent: current progress, challenges, and future opportunities. In: Saxena G, Kumar V, Shah MP (eds) Bioremediation for environmental sustainability: toxicity, mechanisms of contaminants degradation, detoxification and challenges. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-820524-2.00014-6

    Chapter  Google Scholar 

  • Kumar V, Chandra R (2018a) Bacterial assisted phytoremediation of industrial waste pollutants and eco-restoration. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton

    Google Scholar 

  • Kumar V, Chandra R (2018b) Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions. World J Microbiol Biotechnol 34:32. https://doi.org/10.1007/s11274-018-2416-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Chandra R (2020a) Bioremediation of melanoidins containing distillery waste for environmental safety. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_20

    Chapter  Google Scholar 

  • Kumar V, Chandra R (2020b) Metagenomics analysis of rhizospheric bacterial communities of Saccharum arundinaceum growing on organometallic sludge of sugarcane molasses-based distillery. 3 Biotech 10(7):316. https://doi.org/10.1007/s13205-020-02310-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Shahi SK, Singh S (2018) Bioremediation: an eco-sustainable approach for restoration of contaminated sites. In: Singh J, Sharma D, Kumar G, Sharma N (eds) Microbial bioprospecting for sustainable development. Springer, Singapore. https://doi.org/10.1007/978-981-13-0053-0_6

    Chapter  Google Scholar 

  • Kumar V, Thakur IS, Shah MP (2020a) Bioremediation approaches for pulp and paper industry wastewater treatment: recent advances and challenges. In: Shah MP (ed) Microbial bioremediation & biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_1

    Chapter  Google Scholar 

  • Kumar V, Thakur IS, Singh AK, Shah MP (2020b) Application of metagenomics in remediation of contaminated sites and environmental restoration. In: Shah M, Rodriguez-Couto S, Sengor SS (eds) Emerging technologies in environmental bioremediation. Elsevier. https://doi.org/10.1016/B978-0-12-819860-5.00008-0

    Chapter  Google Scholar 

  • Kumar V, Shahi SK, Ferreira LFR, Bilal M, Biswas JK, Bulgariu L (2021a) Detection and characterization of refractory organic and inorganic pollutants discharged in biomethanated distillery effluent and their phytotoxicity, cytotoxicity, and genotoxicity assessment using Phaseolus aureus L. and Allium cepa L. Environ Res 201:111551. https://doi.org/10.1016/j.envres.2021.111551

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kaushal A, Singh K, Shah MP (2021b) Phytoaugmentation technology for phytoremediation of environmental pollutants: opportunities, challenges and future prospects. In: Kumar V, Saxena G, Shah MP (eds) Bioremediation for environmental sustainability: approaches to tackle pollution for cleaner and greener society. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-820318-7.00016-2

    Chapter  Google Scholar 

  • Kumar V, Singh K, Shah MP, Kumar M (2021c) Phytocapping: an eco-sustainable green technology for cleaner environment. In: Kumar V, Saxena G, Shah MP (eds) Bioremediation for environmental sustainability: approaches to tackle pollution for cleaner and greener society. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-820318-7.00022-8

    Chapter  Google Scholar 

  • Kumar V, Ferreira LFR, Sonkar M, Singh J (2021d) Phytoextraction of heavy metals and ultrastructural changes of Ricinus communis L. grown on complex organometallic sludge discharged from alcohol distillery. Environ Technol Innov 22:101382. https://doi.org/10.1016/j.eti.2021.101382

    Article  CAS  Google Scholar 

  • Kumar V, Singh K, Shah MP, Singh AK, Kumar A, Kumar Y (2021e) Application of omics technologies for microbial community structure and function analysis in contaminated environment. In: Shah MP, Sarkar A, Mandal S (eds) Wastewater treatment: cutting edge molecular tools, techniques & applied aspects in waste water treatment. Elsevier, Cambridge, MA. https://doi.org/10.1016/B978-0-12-821925-6.00013-7

    Chapter  Google Scholar 

  • Kumar V, Agrawal S, Shahi SK, Motghare A, Singh S, Ramamurthy PC (2022) Bioremediation potential of newly isolated Bacillus albus strain VKDS9 for decolourization and detoxification of biomethanated distillery effluent and its metabolites characterization for environmental sustainability. Environ Technol Innov 26:102260. https://doi.org/10.1016/j.eti.2021.102260

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Article  Google Scholar 

  • Mehmood A, Hussain A, Irshad M, Khan N, Hamayun M, Ismail, Afridi SG, Lee IJ (2018) IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish. J Plant Interact 13(1):532–542

    Article  CAS  Google Scholar 

  • Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JLR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83(8):e03411–e03416

    Article  CAS  Google Scholar 

  • Molina L, Wittich RM, van Dillewijn P, Segura A (2021) Plant-bacteria interactions for the elimination of atmospheric contaminants in cities. Agronomy 11(3):493

    Article  CAS  Google Scholar 

  • Nadalig T, Farhan Ul Haque M, Roselli S, Schaller H, Bringel F, Vuilleumier S (2011) Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes. FEMS Microbiol Ecol 77(2):438–448

    Article  CAS  Google Scholar 

  • Nurzhanova A, Mukasheva T, Berzhanova R, Kalugin S, Omirbekova A, Mikolasch A (2021) Optimization of microbial assisted phytoremediation of soils contaminated with pesticides. Int J Phytoremediation 23(5):482–491

    Article  CAS  Google Scholar 

  • Ontañon OM, González PS, Ambrosio LF, Paisio CE, Agostini E (2014) Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. Int Biodeterior Biodegradation 88:192–198

    Article  Google Scholar 

  • Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z (2017) Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site. Environ Sci Pollut Res 24(24):19640–19652

    Article  CAS  Google Scholar 

  • Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65(13):1925–1930

    Article  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62(5):741–748

    Article  CAS  Google Scholar 

  • Sandhu M, Jha P, Paul AT, Singh RP, Jha PN (2020) Evaluation of biphenyl- and polychlorinated-biphenyl (PCB) degrading Rhodococcus sp. MAPN-1 on growth of Morus alba by pot study. Int J Phytoremediation 22(14):1487–1496

    Article  CAS  Google Scholar 

  • Singh S, Anil AG, Khasnabis S, Kumar V, Nath B, Sunil Kumar Naik TS, Subramanian S, Kumar V, Singh J, Ramamurthy PC (2021) Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: adsorption kinetics, isotherms, and thermodynamics. Environ Res 203:111891. https://doi.org/10.1016/j.envres.2021.111891

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Sun M, Chao Y, Wang H, Pan H, Yang Q, Cui X, Lou Y, Zhuge Y (2020) Alleviation of lead toxicity and phytostimulation in perennial ryegrass by the Pb-resistant fungus Trichoderma asperellum SD-5. Funct Plant Biol 48(3):333–341

    Article  Google Scholar 

  • Upadhyay A, Srivastava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J Exp Biol 48(6):601–609

    CAS  PubMed  Google Scholar 

  • Uroz S, D'Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149(8):1981–1989

    Article  CAS  Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger ANGELA, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clément C (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32(2):178–193

    Article  CAS  Google Scholar 

  • von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229(1):73–85

    Article  CAS  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111(5):1065–1074

    Article  CAS  Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9(1):1–4

    Google Scholar 

  • Yan X, Huang J, Xu X, Chen D, Xie X, Tao Q, He J, Jiang J (2018) Enhanced and complete removal of phenylurea herbicides by combinational transgenic plant-microbe remediation. Appl Environ Microbiol 84(14):e00273–e00218

    Article  Google Scholar 

  • Ying X, Dongmei G, Judong L, Zhenyu W (2011) Plant-microbe interactions to improve crude oil degradation. Energy Procedia 5:844–848

    Article  Google Scholar 

  • Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E (2010) Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. Microb Ecol 59(2):357–368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chidambaram, R., Rajagopal, R.D., Sagayaraj, I.R., Pazhamalai, V. (2022). Plant–Microbe Associations in Remediation of Contaminants for Environmental Sustainability. In: Kumar, V., Thakur, I.S. (eds) Omics Insights in Environmental Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-19-4320-1_4

Download citation

Publish with us

Policies and ethics