Skip to main content

D2D Communication for Next Generation Cellular Systems: A Review

  • Conference paper
  • First Online:
Emerging Electronics and Automation

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 937))

  • 399 Accesses

Abstract

Device-to-Device (D2D) communication is a proposed technology for next generation cellular communications to provide a wide range of applications such as all time connectivity using Internet of Things (IoT), extended coverage via relaying D2D, public safety, etc. Along with the numerous advantage of D2D integration into existing cellular communication, it also brings the design challenges associated with it. However, these challenges can be handled using intelligent resource allocation under various channel reuse scenario of underlay D2D communication. This paper provides a survey that covers different channel reuse scenarios for D2D communication and presents a summary of resource allocation schemes proposed for various objectives such as maximization of D2D sum rate, system sum rate, access rate, energy efficiency, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ericsson (2019) Ericsson mobility report. Technical report

    Google Scholar 

  2. Index CVN (2019) Cisco visual networking index: forecast and trends, 2017–2022. CA, USA, Cisco, San Jose

    Google Scholar 

  3. Cisco CVNI (2014) Global mobile data traffic forecast update, 2013–2018. White paper (2014)

    Google Scholar 

  4. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082. https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  5. Liu J, Kato N, Ma J, Kadowaki N (2015) Device-to-device communication in LTE-Advanced networks: a survey. IEEE Commun Surveys Tutor 17(4):1923–1940. https://doi.org/10.1109/COMST.2014.2375934

    Article  Google Scholar 

  6. Mach P, Becvar Z, Vanek T (2015) Inband device-to-device communication in OFDMA cellular networks: a survey and challenges. IEEE Commun Surveys Tutorials 17(4):1885–1922. https://doi.org/10.1109/COMST.2015.2447036

    Article  Google Scholar 

  7. Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Commun Surveys Tutorials 16(4):1801–1819. https://doi.org/10.1109/COMST.2014.2319555

    Article  Google Scholar 

  8. Zulhasnine M, Huang C, Srinivasan A (2010) Efficient resource allocation for device-to-device communication underlaying LTE network. In: 2010 IEEE 6th international conference on wireless and mobile computing, networking and communications, pp 368–375. https://doi.org/10.1109/WIMOB.2010.5645039

  9. Lee DH, Choi KW, Jeon WS, Jeong DG (2013) Resource allocation scheme for device-to-device communication for maximizing spatial reuse. In: 2013 IEEE wireless communications and networking conference (WCNC), pp 112–117. https://doi.org/10.1109/WCNC.2013.6554548

  10. Zhao W, Wang S (2015) Resource allocation for device-to-device communication underlaying cellular networks: an alternating optimization method. IEEE Commun Lett 19(8):1398–1401. https://doi.org/10.1109/LCOMM.2015.2444403

    Article  Google Scholar 

  11. Lee DH, Choi KW, Jeon WS, Jeong DG (2014) Two stage semi-distributed resource management for device-to-device communication in cellular networks. IEEE Trans Wireless Commun 13(4):1908–1920. https://doi.org/10.1109/TWC.2014.022014.130480

    Article  Google Scholar 

  12. Wang R, Zhang J, Song SH, Letaief KB (2015) QoS aware channel assignment for weighted sum rate maximization in D2D communications. In: 2015 IEEE global communications conference (GLOBECOM), pp 1–6. https://doi.org/10.1109/GLOCOM.2015.7417341

  13. Cheng Y, Gu Y, Lin X (2014) Power and channel allocation for device-to-device enabled cellular networks. J Comput Inf Syst 10:463–472. https://doi.org/10.12733/jcis8765

  14. Feng D, Lu L, Yuan-Wu Y, Li GY, Feng G, Li S (2013) Device-to-device communications underlaying cellular networks. IEEE Trans Commun 61(8):3541–3551. https://doi.org/10.1109/TCOMM.2013.071013.120787

    Article  Google Scholar 

  15. Feng D, Lu L, Yi Y, Li GY, Feng G, Li S (2016) QoS-aware resource allocation for device-to-device communications with channel uncertainty. IEEE Trans Vehic Technol 65(8):6051–6062. https://doi.org/10.1109/TVT.2015.2479258

    Article  Google Scholar 

  16. Esmat HH, Elmesalawy MM, Ibrahim II (2016) Adaptive resource sharing algorithm for device-to-device communications underlaying cellular networks. IEEE Commun Lett 20(3):530–533. https://doi.org/10.1109/LCOMM.2016.2517012

    Article  Google Scholar 

  17. Yu G, Xu L, Feng D, Yin R, Li GY, Jiang Y (2014) Joint mode selection and resource allocation for device-to-device communications. IEEE Trans Commun 62(11):3814–3824. https://doi.org/10.1109/TCOMM.2014.2363092

    Article  Google Scholar 

  18. Wang L, Wu H (2014) Fast pairing of device-to-device link underlay for spectrum sharing with cellular users. IEEE Commun Lett 18(10):1803–1806. https://doi.org/10.1109/LCOMM.2014.2351400

    Article  Google Scholar 

  19. Tang H, Ding Z (2016) Mixed mode transmission and resource allocation for D2D communication. IEEE Trans Wireless Commun 15(1):162–175. https://doi.org/10.1109/TWC.2015.2468725

    Article  Google Scholar 

  20. Zhao W, Wang S (2015) Resource sharing scheme for device-to-device communication underlaying cellular networks. IEEE Trans Commun 63(12):4838–4848. https://doi.org/10.1109/TCOMM.2015.2495217

    Article  Google Scholar 

  21. Kim T, Dong M (2014) An iterative hungarian method to joint relay selection and resource allocation for D2D communications. IEEE Wireless Commun Lett 3(6):625–628. https://doi.org/10.1109/LWC.2014.2338318

    Article  Google Scholar 

  22. Ma L, Deng X, Wang J, Huang Y, Shi F (2019) Downlink resource sharing in multichannel device-to-device communication. IEEE Wireless Commun Lett 8(3):741–744

    Article  Google Scholar 

  23. Gurjar DS, Upadhyay PK (2017) Overlay device-to-device communications in asymmetric two-way cellular systems with hybrid relaying. IEEE Syst J 12(4):3713–3724

    Article  Google Scholar 

  24. Gurjar DS, Upadhyay PK (2017) Overlay spectrum sharing for device-to-device communications in two-way cellular networks with nodes mobility. Trans Emerg Telecommun Technol 28(10):e3164

    Article  Google Scholar 

  25. Yu C, Tirkkonen O, Doppler K, Ribeiro C (2009) On the performance of device-to-device underlay communication with simple power control. In: VTC spring 2009 IEEE 69th vehicular technology conference, pp 1–5. https://doi.org/10.1109/VETECS.2009.5073734

  26. Yu C, Doppler K, Ribeiro C, Tirkkonen O (2009) Performance impact of fading interference to device-to-device communication underlaying cellular networks. In: 2009 IEEE 20th international symposium on personal, indoor and mobile radio communications, pp 858–862. https://doi.org/10.1109/PIMRC.2009.5450264

  27. Min H, Lee J, Park S, Hong D (2011) Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Trans Wireless Commun 10(12):3995–4000. https://doi.org/10.1109/TWC.2011.100611.101684

    Article  Google Scholar 

  28. Ye Q, Al-Shalash M, Caramanis C, Andrews JG (2014) Resource optimization in device-to-device cellular systems using time-frequency hopping. IEEE Trans Wireless Commun 13(10):5467–5480. https://doi.org/10.1109/TWC.2014.2340879

    Article  Google Scholar 

  29. Lin X, Andrews JG, Ghosh A (2014) Spectrum sharing for device-to-device communication in cellular networks. IEEE Trans Wireless Commun 13(12):6727–6740. https://doi.org/10.1109/TWC.2014.2360202

    Article  Google Scholar 

  30. ElSawy H, Hossain E, Alouini M (2014) Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Trans Commun 62(11):4147–4161. https://doi.org/10.1109/TCOMM.2014.2363849

    Article  Google Scholar 

  31. George G, Mungara RK, Lozano A (2015) An analytical framework for device-to-device communication in cellular networks. IEEE Trans Wireless Commun 14(11):6297–6310. https://doi.org/10.1109/TWC.2015.2452264

    Article  Google Scholar 

  32. Darshi S, Bhattacharjee R (2014) Interference analysis of subband allocation for femtocells in fractional frequency reuse based OFDMA networks. In: 2014 international conference on signal processing and communications (SPCOM), pp 1–6. https://doi.org/10.1109/SPCOM.2014.6983997

  33. Chae HS, Gu J, Choi BG, Chung MY (2011) Radio resource allocation scheme for device-to-device communication in cellular networks using fractional frequency reuse. In: 2011 IEEE 17th Asia Pacific conference on communications, pp 58–62

    Google Scholar 

  34. Zhu H, Wang J (2014) Device-to-device communication in cellular networks with fractional frequency reuse. In: 2014 IEEE international conference on communications (ICC), pp 5503–5507. https://doi.org/10.1109/ICC.2014.6884197

  35. Shah ST, Gu J, Chung MY, Hasan SF (2014) FFR based resource allocation scheme for device-to-device communication. In: 2014 IEEE 3rd global conference on consumer electronics (GCCE), pp 622–623. https://doi.org/10.1109/GCCE.2014.7031096

  36. Bao P, Yu G, Yin R (2013) Novel frequency reusing scheme for interference mitigation in D2D uplink underlaying networks. In: 2013 9th international wireless communications and mobile computing conference (IWCMC), pp 491–496. https://doi.org/10.1109/IWCMC.2013.6583607

  37. Hoang TD, Le LB, Le-Ngoc T (2015) Energy-efficient resource allocation for D2D communications in cellular networks. In: 2015 IEEE international conference on communications (ICC), pp 2251–2256. https://doi.org/10.1109/ICC.2015.7248660

  38. Robat Mili M, Tehrani P, Bennis M (2016) Energy-efficient power allocation in OFDMA D2D communication by multiobjective optimization. IEEE Wireless Commun Lett 5(6):668–671. https://doi.org/10.1109/LWC.2016.2614507

    Article  Google Scholar 

  39. Xu H, Xu W, Yang Z, Pan Y, Shi J, Chen M (2017) Energy-efficient resource allocation in D2D underlaid cellular uplinks. IEEE Commun Lett 21(3):560–563. https://doi.org/10.1109/LCOMM.2016.2633338

    Article  Google Scholar 

  40. Hoang TD, Le LB, Le-Ngoc T (2015) Dual decomposition method for energy-efficient resource allocation in D2D communications underlying cellular networks. In: 2015 IEEE global communications conference (GLOBECOM), pp 1–6. https://doi.org/10.1109/GLOCOM.2015.7417275

  41. Bhardwaj A, Agnihotri S (2018) Energy and spectral efficiency trade-off for D2D multicasts in underlay cellular networks. IEEE Wireless Commun Lett 7(4):546–549. https://doi.org/10.1109/LWC.2018.2794353

    Article  Google Scholar 

  42. Idris F, Tang J, So DKC (2018) Resource and energy efficient device-to-device communications in downlink cellular system. In: 2018 IEEE wireless communications and networking conference (WCNC), pp 1–6. https://doi.org/10.1109/WCNC.2018.8377382

  43. Panahi FH, Panahi FH, Hattab G, Ohtsuki T, Cabric D (2018) Green heterogeneous networks via an intelligent sleep/wake-up mechanism and D2D communications. IEEE Trans Green Commun Netw 2(4):915–931. https://doi.org/10.1109/TGCN.2018.2844301

    Article  Google Scholar 

  44. Feng D, Yu G, Xiong C, Yuan-Wu Y, Li GY, Feng G, Li S (2015) Mode switching for energy-efficient device-to-device communications in cellular networks. IEEE Trans Wireless Commun 14(12):6993–7003. https://doi.org/10.1109/TWC.2015.2463280

    Article  Google Scholar 

  45. Kai C, Li H, Xu L, Li Y, Jiang T (2018) Energy-efficient device-to-device communications for green smart cities. IEEE Trans Industrial Inf 14(4):1542–1551. https://doi.org/10.1109/TII.2017.2789304

    Article  Google Scholar 

  46. Hu J, Heng W, Li X, Wu J (2017) Energy-efficient resource reuse scheme for D2D communications underlaying cellular networks. IEEE Commun Lett 21(9):2097–2100. https://doi.org/10.1109/LCOMM.2017.2711490

    Article  Google Scholar 

  47. Wang F, Xu C, Song L, Han Z (2015) Energy-efficient resource allocation for device-to-device underlay communication. IEEE Trans Wireless Commun 14(4):2082–2092. https://doi.org/10.1109/TWC.2014.2379653

    Article  Google Scholar 

  48. Jiang Y, Liu Q, Zheng F, Gao X, You X (2016) Energy-efficient joint resource allocation and power control for D2D communications. IEEE Trans Vehic Technol 65(8):6119–6127. https://doi.org/10.1109/TVT.2015.2472995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Gour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gour, R. (2022). D2D Communication for Next Generation Cellular Systems: A Review. In: Chong, P.H.J., Kalam, A., Pascoal, A., Bera, M.K. (eds) Emerging Electronics and Automation. Lecture Notes in Electrical Engineering, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-19-4300-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4300-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4299-0

  • Online ISBN: 978-981-19-4300-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics