Skip to main content

Cyclic Performance of Splice Connections for Fibre Reinforced Polymer Members

  • Chapter
  • First Online:
Composites for Building Assembly

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 400 Accesses

Abstract

This study investigates the cyclic performance of splice connections developed for hollow section fibre reinforced polymer (FRP) members. Splice connection specimens, each consisting of a steel bolted flange joint between two hollow section steel-FRP bonded sleeve joints, are prepared in three configurations with difference in bolt arrangement or bond length. Correspondingly, detailed finite element (FE) models are constructed with consideration of yielding of the steelĀ components, damage in the adhesive bond, pre-tensioning of the bolts and contact between the bolt-fastened parts. Tested under a cyclic flexural loading, the specimens experience different levels of yielding in the steel flange-plates before ultimate failure in the FRP member or in the steel flange-plate. Ductility and energy dissipation capacity are demonstrated in a specimen where plastic deformation of the steel flange-plates is fully developed. The strain responses are also analysed to identify damage in the adhesive bond and yielding in the flange-plates. The FE modelling agrees with the experimental results in terms of moment-rotation and load-strain responses, and can also predict the initiation of the ultimate failure in the FRP using the Tsai-Wu failure criterion.

Reprinted from Composite Structures, 243, Chengyu Qiu, Yu Bai, Zhenqi Cai, Zhujing Zhang, Cyclic performance of splice connections for hollow section fibre reinforced polymer members, 112222, Copyright (2020), with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teng J, Chen J, Smith ST, Lam L (2003) Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review. Proc Inst Civ Eng-Struct Build 156(1):51ā€“62

    ArticleĀ  Google ScholarĀ 

  2. Zhao X-L, Zhang L (2007) State-of-the-art review on FRP strengthened steel structures. Eng Struct 29(8):1808ā€“1823

    ArticleĀ  Google ScholarĀ 

  3. Meyer R (2012) Handbook of pultrusion technology: Springer Science & Business Media.

    Google ScholarĀ 

  4. Kumar P, Chandrashekhara K, Nanni A (2004) Structural performance of a FRP bridge deck. Constr Build Mater 18(1):35ā€“47

    ArticleĀ  Google ScholarĀ 

  5. Hayes MD, Ohanehi D, Lesko JJ, Cousins TE, Witcher D (2000) Performance of tube and plate fiberglass composite bridge deck. J Compos Constr 4(2):48ā€“55

    ArticleĀ  Google ScholarĀ 

  6. Zhang D, Zhao Q, Huang Y, Li F, Chen H, Miao D (2014) Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system. Compos Struct 108:600ā€“615

    ArticleĀ  Google ScholarĀ 

  7. Yang X, Bai Y, Ding F (2015) Structural performance of a large-scale space frame assembled using pultruded GFRP composites. Compos Struct 133:986ā€“996

    ArticleĀ  Google ScholarĀ 

  8. Satasivam S, Bai Y, Zhao X-L (2014) Adhesively bonded modular GFRP webā€“flange sandwich for building floor construction. Compos Struct 111:381ā€“392

    ArticleĀ  Google ScholarĀ 

  9. Satasivam S, Bai Y, Yang Y, Zhu L, Zhao X-L (2018) Mechanical performance of two-way modular FRP sandwich slabs. Compos Struct 184:904ā€“916

    ArticleĀ  Google ScholarĀ 

  10. Xie L, Qi Y, Bai Y, Qiu C, Wang H, Fang H et al (2019) Sandwich assemblies of composites square hollow sections and thin-walled panels in compression. Thin-Walled Struct 145:106412

    ArticleĀ  Google ScholarĀ 

  11. Bank LC, Mosallam AS, McCoy GT (1994) Design and performance of connections for pultruded frame structures. J Reinf Plast Compos 13(3):199ā€“212

    ArticleĀ  Google ScholarĀ 

  12. Bank L, Mosallam A, Gonsior H (1990) Beam-to-column connections for pultruded FRP structures. ASCE, Serviceability and durability of construction materials, pp 804-813

    Google ScholarĀ 

  13. Mosallam AS, Abdelhamid MK, Conway JH (1994) Performance of pultruded FRP connections under static and dynamic loads. J Reinf Plast Compos 13(5):386ā€“407

    ArticleĀ  Google ScholarĀ 

  14. Bank LC, Yin J, Moore L, Evans DJ, Allison RW (1996) Experimental and numerical evaluation of beam-to-column connections for pultruded structures. J Reinf Plast Compos 15(10):1052ā€“1067

    ArticleĀ  Google ScholarĀ 

  15. Mottram J, Zheng Y (1999) Further tests on beam-to-column connections for pultruded frames: web-cleated. J Compos Constr 3(1):3ā€“11

    ArticleĀ  Google ScholarĀ 

  16. Mottram J, Zheng Y (1999) Further tests of beam-to-column connections for pultruded frames: flange-cleated. J Compos Constr 3(3):108ā€“116

    ArticleĀ  Google ScholarĀ 

  17. Mottram J, Turvey GJ (2003) Physical test data for the appraisal of design procedures for bolted joints in pultruded FRP structural shapes and systems. Prog Struct Mat Eng 5(4):195ā€“222

    ArticleĀ  Google ScholarĀ 

  18. Smith S, Parsons I, Hjelmstad K (1998) An experimental study of the behavior of connections for pultruded GFRP I-beams and rectangular tubes. Compos Struct 42(3):281ā€“290

    ArticleĀ  Google ScholarĀ 

  19. Smith S, Parsons I, Hjelmstad K (1999) Experimental comparisons of connections for GFRP pultruded frames. J Compos Constr 3(1):20ā€“26

    ArticleĀ  Google ScholarĀ 

  20. Singamsethi S, LaFave J, Hjelmstad K (2005) Fabrication and testing of cuff connections for GFRP box sections. J Compos Constr 9(6):536ā€“544

    ArticleĀ  Google ScholarĀ 

  21. Wu C, Zhang Z, Bai Y (2016) Connections of tubular GFRP wall studs to steel beams for building construction. Compos B Eng 95:64ā€“75

    ArticleĀ  Google ScholarĀ 

  22. Zhang ZJ, Bai Y, Xiao X (2018) Bonded sleeve connections for joining tubular glass fiber-reinforced polymer beams and columns: experimental and numerical studies. J Compos Constr 22(4):04018019

    ArticleĀ  Google ScholarĀ 

  23. Martins D, ProenƧa M, Correia JR, Gonilha J, Arruda M, Silvestre N (2017) Development of a novel beam-to-column connection system for pultruded GFRP tubular profiles. Compos Struct 171:263ā€“276

    ArticleĀ  Google ScholarĀ 

  24. Bruneau M, Walker D (1994) Cyclic testing of pultruded fiber-reinforced plastic beam-column rigid connection. J Struct Eng 120(9):2637ā€“2652

    ArticleĀ  Google ScholarĀ 

  25. Mosallam A (1997) Design considerations for pultruded composite beam-to-column connections subjected to cyclic and sustained loading conditions. Marketing technical regulatory sessions of the composites institutes international composites expo 14-B

    Google ScholarĀ 

  26. Carrion JE, LaFave JM, Hjelmstad KD (2005) Experimental behavior of monolithic composite cuff connections for fiber reinforced plastic box sections. Compos Struct 67(3):333ā€“345

    ArticleĀ  Google ScholarĀ 

  27. Zhang Z, Bai Y, He X, Jin L, Zhu L (2018) Cyclic performance of bonded sleeve beam-column connections for FRP tubular sections. Compos B Eng 142:171ā€“182

    ArticleĀ  Google ScholarĀ 

  28. Martins D, ProenƧa M, Gonilha JA, SĆ” MF, Correia JR, Silvestre N (2019) Experimental and numerical analysis of GFRP frame structures. Part 1: cyclic behaviour at the connection level. Compos Struct 220:304ā€“317

    ArticleĀ  Google ScholarĀ 

  29. Martins D, SĆ” MF, Gonilha JA, Correia JR, Silvestre N, Ferreira JG (2019) Experimental and numerical analysis of GFRP frame structures. Part 2: monotonic and cyclic sway behaviour of plane frames. Compos Struct 220:194ā€“208

    ArticleĀ  Google ScholarĀ 

  30. Bank LC (2012) Progressive failure and ductility of FRP composites for construction. J Compos Constr 17(3):406ā€“419

    ArticleĀ  Google ScholarĀ 

  31. Nagaraj V, Gangarao HV (1998) Fatigue behavior and connection efficiency of pultruded GFRP beams. J Compos Constr 2(1):57ā€“65

    ArticleĀ  Google ScholarĀ 

  32. Manalo A, Mutsuyoshi H (2012) Behavior of fiber-reinforced composite beams with mechanical joints. J Compos Mater 46(4):483ā€“496

    ArticleĀ  Google ScholarĀ 

  33. Hai ND, Mutsuyoshi H (2012) Structural behavior of double-lap joints of steel splice plates bolted/bonded to pultruded hybrid CFRP/GFRP laminates. Constr Build Mater 30:347ā€“359

    ArticleĀ  Google ScholarĀ 

  34. Turvey G (2014) Experimental and analytical investigation of two-and six-plate bonded splice joints on serviceability limit deformations of pultruded GFRP beams. Compos Struct 111:426ā€“435

    ArticleĀ  Google ScholarĀ 

  35. Turvey GJ, Cerutti X (2015) Flexural behaviour of pultruded glass fibre reinforced polymer composite beams with bolted splice joints. Compos Struct 119:543ā€“550

    ArticleĀ  Google ScholarĀ 

  36. Turvey GJ, Cerutti X (2015) Effects of splice joint geometry and bolt torque on the serviceability response of pultruded glass fibre reinforced polymer composite beams. Compos Struct 131:490ā€“500

    ArticleĀ  Google ScholarĀ 

  37. Qiu C, Ding C, He X, Zhang L, Bai Y (2018) Axial performance of steel splice connection for tubular FRP column members. Compos Struct 189:498ā€“509

    ArticleĀ  Google ScholarĀ 

  38. Qiu C, Bai Y, Zhang L, Jin L (2019) Bending performance of splice connections for assembly of tubular section FRP members: experimental and numerical study. J Compos Constr 23(5):04019040

    ArticleĀ  Google ScholarĀ 

  39. Australia S (1998) AS4100 steel structures. Australia, Sydney

    Google ScholarĀ 

  40. ASTM International (2014) Standard test method for tensile properties of polymer matrix composite materials. ASTM D3039. West Conshohocken, PA

    Google ScholarĀ 

  41. ASTM International (2015) Standard Test Method for Compressive Properties of Rigid Plastics. ASTM D695ā€“15. West Conshohocken, PA.

    Google ScholarĀ 

  42. ASTM International (2015) Standard test method for flexural properties of polymer matrix composite materials. ASTM D7264. West Conshohocken, PA

    Google ScholarĀ 

  43. ASTM International (2016) Standard test method for short-beam strength of polymer matrix composite materials and their laminates. ASTM D2344. West Conshohocken, PA

    Google ScholarĀ 

  44. Lee S, Munro M, Scott R (1990) Evaluation of three in-plane shear test methods for advanced composite materials. Composites 21(6):495ā€“502

    ArticleĀ  Google ScholarĀ 

  45. ASTM International (2010) Standard test methods and definitions for mechanical testing of steel products. ASTM A370ā€“10. West Conshohocken, PA

    Google ScholarĀ 

  46. Zhang Z, Wu C, Nie X, Bai Y, Zhu L (2016) Bonded sleeve connections for joining tubular GFRP beam to steel member: Numerical investigation with experimental validation. Compos Struct 157:51ā€“61

    ArticleĀ  Google ScholarĀ 

  47. ASTM International (2010) Standard test method for tensile properties of plastics. ASTM D638ā€“10. West Conshohocken, PA

    Google ScholarĀ 

  48. Krawinkler H (1992) Guidelines for cyclic seismic testing of components of steel structures. Appl Technol Council

    Google ScholarĀ 

  49. Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5(1):58-80

    ArticleĀ  Google ScholarĀ 

  50. Trahair N, Bradford M (1998) The behaviour and design of steel structures to AS 4100. Third Edition ed: Taylor & Francis

    Google ScholarĀ 

  51. de Castro J, Keller T (2008) Ductile double-lap joints from brittle GFRP laminates and ductile adhesives, part I: experimental investigation. Compos B Eng 39(2):271ā€“281

    ArticleĀ  Google ScholarĀ 

  52. Xia S, Teng J (2005) Behaviour of FRP-to-steel bonded joints. Proceedings of the international symposium on bond behaviour of FRP in structures. In: International institute for FRP in construction, pp 419ā€“426

    Google ScholarĀ 

  53. Wheeler AT, Clarke MJ, Hancock GJ (2000) FE modeling of four-bolt, tubular moment end-plate connections. J Struct Eng 126(7):816-822

    ArticleĀ  Google ScholarĀ 

  54. Qiu C, Feng P, Yang Y, Zhu L, Bai Y (2017) Joint capacity of bonded sleeve connections for tubular fibre reinforced polymer members. Compos Struct 163:267ā€“279

    ArticleĀ  Google ScholarĀ 

  55. Turvey GJ, Zhang Y (2005) Tearing failure of webā€“flange junctions in pultruded GRP profiles. Compos A Appl Sci Manuf 36(2):309ā€“317

    ArticleĀ  Google ScholarĀ 

  56. Turvey GJ, Zhang Y (2006) Shear failure strength of webā€“flange junctions in pultruded GRP WF profiles. Constr Build Mater 20(1ā€“2):81-89

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, C., Bai, Y., Cai, Z., Zhang, Z. (2023). Cyclic Performance of Splice Connections for Fibre Reinforced Polymer Members. In: Bai, Y. (eds) Composites for Building Assembly . Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-19-4278-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4278-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4277-8

  • Online ISBN: 978-981-19-4278-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics