Skip to main content

Effect of Different Machining and Non-machining Parameters on Machining Performance of Electrochemical Discharge Machining (ECDM): A Review

  • Conference paper
  • First Online:
Advances in Manufacturing Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In the present era of green manufacturing, non-traditional machining (NTM) processes are catering with best performance for machining of both conductive and non-conductive materials. Electro Chemical Discharge Machining (ECDM) process is materialized as a potential contender in the territory of non-traditional machining (NTM) processes. ECDM is a competent machining process which is hybridization of Electro-Chemical Machining (ECM) and Electro Discharge Machining (EDM) and also having advantages of both processes. ECDM is significantly used for machining of advanced materials, like, quartz, glass, composites, ceramics, super alloys and many more. The current article incorporates a review of various parts of the ECDM process including previous background, process variants, affecting parameters with their impact and best in class crossover approaches for upgrading the machining execution. A brief about future trends in ECDM has additionally been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EMT-2531, Manufacturing technology II (2018). https://www.studocu.com/en/document/jomo-kenyatta-university-of-agriculture-and-technology/mechatronics-engineering/summaries/chp1-overview/4812893/view

  2. McGeough JA (1988) Advanced methods of machining. Chapman and Hall, London.

    Google Scholar 

  3. Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175

    Article  Google Scholar 

  4. Qin Y et al (2010) Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47:821–837

    Article  Google Scholar 

  5. Uhlmann E et al (2016) Process chains for high-precision components with micro-scale features. CIRP Ann 65:549–572

    Article  Google Scholar 

  6. Vipindas K, Kuriachen B, Mathew J (2019) Investigations into the effect of process parameters on surface roughness and burr formation during micro end milling of TI–6AL–4V. Int J Adv Manuf Technol 100:1207–1222

    Article  Google Scholar 

  7. Xun LI, Chunming G, Peng Z (2018) Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces. Chin J Aeronaut 31:1399–1405

    Article  Google Scholar 

  8. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  9. Jain VK, Choudhury SK, Ramesh KM (2002) On the machining of alumina and glass. Int J Mach Tools Manuf 42:1269–1276

    Article  Google Scholar 

  10. Gupta PK, Dvivedi A, Kumar P (2016) Effect of pulse duration on quality characteristics of blind hole drilled in glass by ECDM. Mater Manuf Processes 31:1740–1748

    Article  Google Scholar 

  11. Kurafuji H, Suda K (1968) Electrical discharge drilling of glass. Ann CIRP 16:415–419

    Google Scholar 

  12. Cook NH, Foote GB, Jordan P, Kalyani BN (1973) Experimental studies in electro-machining

    Google Scholar 

  13. Kubota M (1974) Drilling of steel by using Electro-chemical Discharge Machining. In: Proceedings of the international conference on production engineering, Tokyo, pp 51–55

    Google Scholar 

  14. El-Hofy H, McGeough JA (1988) Evaluation of an apparatus for electrochemical arc wire-machining

    Google Scholar 

  15. Khairy ABE (1989) Die-Sin King 3:191–195

    Google Scholar 

  16. Allesu K, Ghosh A, Wuju HK (1991) Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass. Eur J Mech Environ Eng 36:201–207

    Google Scholar 

  17. Langen H, Breguet J-M, Bleuler H, Renaud P, Masuzawa T (1998) Micro electrochemical discharge machining of glass. Int J Electr Mach 3:65–69

    Article  Google Scholar 

  18. Jain V, Dixit PM, Pandey P (1999) On the analysis of the electrochemical spark machining process. Int J Mach Tools Manuf 39:165–186

    Article  Google Scholar 

  19. Daridon A et al (2001) Multi-layer microfluidic glass chips for microanalytical applications. Fresenius’ J Anal Chem 371:261–269

    Article  Google Scholar 

  20. Lange H, Fascio V, Wüthrich R, Viquerat D (2002) Three-dimensional structuring of Pyrex glass devices—Trajectory control. In: International conference on European society for precision engineering and nanotechnology (EUSPEN), vol 2

    Google Scholar 

  21. Malkin S, Ritter JE (1989) Grinding mechanisms and strength degradation for ceramics

    Google Scholar 

  22. Rezaei SM, Suto T, Waida T, Noguchi H (1992) Creep feed grinding of advanced ceramics. Proc Inst Mech Eng Part B: J Eng Manuf 206:93–99

    Article  Google Scholar 

  23. Koenig W, Popp M (1989) Precision machining of advanced ceramics. 68:550–553

    Google Scholar 

  24. Inasaki I, Nakayama K (1986) High-efficiency grinding of advanced ceramics. CIRP Ann Manuf Technol 35:211–214

    Article  Google Scholar 

  25. Koenig W, Wemhoener J (1989) Optimizing grinding of SiSiC. Am Ceram Soc Bull 68:545–548

    Google Scholar 

  26. Anantharamu B, Krishnamurthy R, Gokularathnam CV (1989) Machining performance of toughened zirconia ceramic and cold compact alumina ceramic in ultrasonic drilling. J Mech Work Technol 20:365–375

    Article  Google Scholar 

  27. Kremer D, Saleh SM, Ghabrial SR, Moisan A (1981) The state of the art of ultrasonic machining. Cirp Ann-Manuf Technol 30:107–110

    Google Scholar 

  28. Pei ZJ, Ferreira P, Kapoor SG, Haselkorn M (1995) Rotary ultrasonic machining for face milling of ceramics. Int J Mach Tools Manuf 35:1033–1046

    Article  Google Scholar 

  29. Pei ZJ, Ferreira P, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Technol 48:771–777

    Article  Google Scholar 

  30. Hamatani G, Ramulu M (1990) Machinability of high temperature composites by abrasive waterjet. Journal of Engineering Materials and Technology-transactions of The Asme - J ENG MATER TECHNOL 112, (1990).

    Google Scholar 

  31. Wada S, Kiyoshige M (1992) Erosion and abrasive water jet cutting of ceramics. Ceramics Jpn 27:970–974

    Google Scholar 

  32. Deng QL, Zhang YK; Tang YX, CYY (1994) Micro-crack reduction and removal in ceramic laser machining. Electromachining 3:2–4

    Google Scholar 

  33. Wallace R, Copley S, Bass M (1985) Laser machining of silicon nitride. https://doi.org/10.1364/CLEO.1985.FP2

  34. Wallace RJ, Copley SM (1989) Shaping silicon nitride with a carbon dioxide laser by overlapping multiple grooves

    Google Scholar 

  35. Miyazaki T (1992) Laser machining of ceramics. Bull Ceram Soc Jpn 27:975–980

    Google Scholar 

  36. Abou Ziki JD, Wüthrich R (2013) Forces exerted on the tool-electrode during constant-feed glass micro-drilling by spark assisted chemical engraving. Int J Mach Tools Manuf 73:47–54

    Google Scholar 

  37. Arya RK, Dvivedi A (2019) Investigations on quantification and replenishment of vaporized electrolyte during deep micro-holes drilling using pressurized flow-ECDM process. J Mater Process Technol 266:217–229

    Article  Google Scholar 

  38. Kim DJ, Ahn Y, Lee SH, Kim YK (2006) Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass. Int J Mach Tools Manuf 46:1064–1067

    Article  Google Scholar 

  39. Zheng Z-P, Su H-C, Huang F-Y, Yan B-H (2007) The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process. J Micromech Microeng 17:265

    Article  Google Scholar 

  40. Paul L, Hiremath SS (2013) Response surface modelling of micro holes in electrochemical discharge machining process. Procedia Eng 64:1395–1404

    Article  Google Scholar 

  41. Goud M, Sharma AK (2016) Analysis of material removal and radial overcut during micro-drilling of soda lime glass using electrochemical discharge machining (ECDM). 213–217

    Google Scholar 

  42. Zheng ZP, Lin JK, Huang FY, Yan BH (2008) Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage. J Micromech Microeng 18

    Google Scholar 

  43. Wüthrich R, Spaelter U, Wu Y, Bleuler H (2006) A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE). J Micromech Microeng 16:1891–1896

    Article  Google Scholar 

  44. Abou Ziki JD, Wüthrich R (2015) Nature of drilling forces during spark assisted chemical engraving. Manuf Lett 4:10–13

    Google Scholar 

  45. Wüthrich R, Despont B, Maillard P, Bleuler H (2006) Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling. J Micromech Microeng 16:N28

    Article  Google Scholar 

  46. Gupta P, Dvivedi A, Kumar P (2014) A study on the phenomenon of hole overcut with working gap in ECDM. J Prod Eng 17:30–34

    Google Scholar 

  47. Paul L, Hiremath SS, Jinka R (2014) Experimental investigation and parametric analysis of electro chemical discharge machining. Int J Manuf Technol Manage 28:57–79

    Google Scholar 

  48. Manna A, Narang V (2012) A study on micro machining of e-glass-fibre-epoxy composite by ECSM process. Int J Adv Manuf Technol 61:1191–1197

    Article  Google Scholar 

  49. Sarkar BR, Doloi B, Bhattacharyya B (2006) Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int J Adv Manuf Technol 28:873–881

    Article  Google Scholar 

  50. Shanmukhi K, Vundavilli PR, Surekha B (2015) Modeling of ECDM micro-drilling process using GA- and PSO-trained radial basis function neural network. Soft Comput 19:2193–2202

    Article  Google Scholar 

  51. Chak SK, Venkateswara Rao P (2008) The drilling of Al2O3 using a pulsed DC supply with a rotary abrasive electrode by the electrochemical discharge process. Int J Adv Manuf Technol 39:633–641

    Google Scholar 

  52. Zhang Z et al (2016) A study to explore the properties of electrochemical discharge effect based on pulse power supply. Int J Adv Manuf Technol 85:2107–2114

    Article  Google Scholar 

  53. Charak A, Jawalkar CS (2017) Technological landscaping on electro chemical discharge machining of non-conducting materials. i-Manager’s J Mater Sci 5:31

    Google Scholar 

  54. Sabahi N, Razfar MR (2018) Investigating the effect of mixed alkaline electrolyte (NaOH + KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM). Int J Adv Manuf Technol 95:643–657

    Article  Google Scholar 

  55. Dhanvijay MR, Kulkarni VA, Doke A (2019) Experimental investigation and analysis of electrochemical discharge machining (ECDM) on fiberglass reinforced plastic (FRP). J Inst Eng (India): Ser C 100:763–769

    Google Scholar 

  56. Huang S, Liu Y, Li J, Hu H, Sun L (2014) Electrochemical discharge machining micro-hole in stainless steel with tool electrode high-speed rotating. Mater Manuf Process 29

    Google Scholar 

  57. Ladeesh VG, Manu R (2019) Grinding-aided electrochemical discharge drilling in the light of electrochemistry. Proc Inst Mech Eng C J Mech Eng Sci 233:1896–1909

    Article  Google Scholar 

  58. Paul L, Kurian DG (2018) Effects of preheating electrolyte in micro ECDM process. Mater Today: Proc 5:11882–11887

    Google Scholar 

  59. Liu JW, Yue TM, Guo ZN (2010) An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Mach Tools Manuf 50:86–96

    Article  Google Scholar 

  60. Han MS, Min BK, Lee SJ (2008) Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode. J Micromech Microeng 18

    Google Scholar 

  61. Cheng C-P et al (2010) Study of gas film quality in electrochemical discharge machining. Int J Mach Tools Manuf 50:689–697

    Article  Google Scholar 

  62. Mehrabi F, Farahnakian M, Elhami S, Razfar MR (2018) Application of electrolyte injection to the electro-chemical discharge machining (ECDM) on the optical glass. J Mater Process Technol 255:665–672

    Article  Google Scholar 

  63. Dhanvijay M, Ahuja BB (2014) Micromachining of ceramics by electrochemical discharge process considering stagnant and electrolyte flow method. Procedia Technol 14:165–172

    Article  Google Scholar 

  64. Ansari F, Sharma AK, Karunakar DB (2013) Experimental investigations on stirring assisted electrochemical discharge machining. i-Manager’s J Mech Eng 3:16

    Google Scholar 

  65. Ziki JDA, Wüthrich R (2012) Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving. Int J Adv Manuf Technol 61:481–486

    Article  Google Scholar 

  66. Yang CT, Ho SS, Yan BH (2001) Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM). In: Key engineering materials, vol 196. Trans Tech Publications, pp 149–166

    Google Scholar 

  67. Kulkarni A, Sharan R, Lal GK (2002) An experimental study of discharge mechanism in electrochemical discharge machining. Int J Mach Tools Manuf 42:1121–1127

    Article  Google Scholar 

  68. Nandi D, Puri AB, Basak I (2011) Behaviour of bubbles generated in electro-chemical. Int J Eng Sci 3:8274–8280

    Google Scholar 

  69. Raghuram V, Pramila T, Srinivasa YG, Narayanasamy K (1995) Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon. J Mater Process Tech 52:301–318

    Article  Google Scholar 

  70. Crichton IM, McGeough JA (1985) Studies of the discharge mechanisms in electrochemical arc machining. J Appl Electrochem 15:113–119

    Article  Google Scholar 

  71. Basak I, Ghosh A (1997) ISM of material removal in electrochemical machining: a theoretical model and experiment. J Mater Process Technol 71:350–359

    Article  Google Scholar 

  72. Ghosh A (1997) Electrochemical discharge machining: Principle and possibilities. Sadhana 22:435–447

    Article  Google Scholar 

  73. Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Technol 95:145–154

    Article  Google Scholar 

  74. Tang L, Zhao G (2012) Discussing the measure of improving Pyrex glass ECDM removal rate. Adv Mater Res 411:319–322

    Article  Google Scholar 

  75. Cao XD, Kim BH, Chu CN (2009) Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining. Precis Eng 33:459–465

    Article  Google Scholar 

  76. Gautam N, Jain VK (1998) Experimental investigations into ECSD process using various tool kinematics. Int J Mach Tools Manuf 38:15–27

    Article  Google Scholar 

  77. Wüthrich R, Fujisaki K, Couthy P, Hof LA, Bleuler H (2005) Spark assisted chemical engraving (SACE) in microfactory. J Micromech Microeng 15

    Google Scholar 

  78. Coteata M, Slatineanu L, Dodun O, Ciofu C (2008) Electrochemical discharge machining of small diameter holes. IntJ Mater Form 1:1327–1330

    Article  Google Scholar 

  79. Coteaţǎ M, Schulze HP, Slǎtineanu L (2011) Drilling of difficult-to-cut steel by electrochemical discharge machining. Mater Manuf Processes 26:1466–1472

    Article  Google Scholar 

  80. Wüthrich R, Hof LA (2006) The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications. Int J Mach Tools Manuf 46:828–835

    Article  Google Scholar 

  81. Jiang B, Ni J (2016) Micro-machining of glass using electrochemical discharge assisted cutting. In: ASME 2016 11th international manufacturing science and engineering conference, MSEC 2016, vol 1, pp 1–6

    Google Scholar 

  82. Laio YS, Wu LC, Peng WY (2013) A study to improve drilling quality of electrochemical discharge machining (ECDM) process. Procedia CIRP 6:609–614

    Article  Google Scholar 

  83. Wüthrich R, Fascio V, Bleuler H (2004) A stochastic model for electrode effects. Electrochim Acta 49:4005–4010

    Article  Google Scholar 

  84. Han MS, Min BK, Lee SJ (2007) Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte. J Mater Process Technol 191:224–227

    Article  Google Scholar 

  85. Varghese A, Paul L (2018) Effect of powder mixed electrolyte in ECDM Process. Mater Today: Proc 5:11864–11869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soni, D., Gidwani, B.D., Shringi, R. (2023). Effect of Different Machining and Non-machining Parameters on Machining Performance of Electrochemical Discharge Machining (ECDM): A Review. In: Dikshit, M.K., Soni, A., Davim, J.P. (eds) Advances in Manufacturing Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-4208-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4208-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4207-5

  • Online ISBN: 978-981-19-4208-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics