Skip to main content

Anaerobic Digestion Manure Conversion and Recycling

  • Chapter
  • First Online:
Manure Technology and Sustainable Development

Abstract

Manure production is currently growing with the demand of meat products. Manure is a nutrient-rich biomass containing carbon, nitrogen, sulfur and phosphorous compounds which can at the same time be useful as fertilizing agents and harmful as pollutants in large quantities. Nitrogen and phosphorous can pollute surface and groundwater, leading to algal blooms and damage to aquatic ecosystems, while carbon, nitrogen and sulfur can lead to atmospheric emissions which can be strongly odorous, dangerous for human health and act as greenhouse gases. Composting and anaerobic digestion are two ways to treat manure to reduce these impacts, but only anaerobic digestion can also recover the energy still contained in manure. This chapter shows the basis of anaerobic digestion with a focus on manure as biomass. The effect on the anaerobic digestion of manure composition, which can vary widely depending on livestock species and feedstock, is explored. The most common types of anaerobic digestion reactors are summarized, detailing their advantages and disadvantages. The operative parameters to check for and control in managing an anaerobic digestion reactor are analyzed thoroughly, examining their effect on the process and how they interact in a complex system. Finally, as biogas is a green energy source and methane is an important energy carrier, its production and characteristics are evaluated, with a special focus on manure anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABR:

Anaerobic baffled reactor

ASBR:

Anaerobic sequencing batch reactor

BMP:

Biochemical methane potential

BOD:

Biological oxygen demand

CISTR:

Continuous ideally stirred-tank reactor

COD:

Chemical oxygen demand

CSTR:

Continuous stirred-tank reactor

RT:

Retention Time

TS:

Total solids

UASB:

Up-flow anaerobic sludge blanket

UASS:

Up-flow anaerobic solid-state

VFA:

Volatile fatty acids

VOC:

Volatile organic components

VS:

Volatile solids

References

  1. Aarhus University (2016) New method for quantifying methane emissions from manure management. https://www.sciencedaily.com/releases/2016/08/160817131652.htm

  2. Abubakar BSUI, Ismail N (2012) Anaerobic digestion of cow dung for biogas production. ARPN J Eng Appl Sci

    Google Scholar 

  3. Ahring BK, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol. https://doi.org/10.1007/BF00218466

    Article  Google Scholar 

  4. Álvarez JA et al (2010) The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.06.075

    Article  Google Scholar 

  5. Amha YM et al (2018) Inhibition of anaerobic digestion processes: applications of molecular tools. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.210

    Article  Google Scholar 

  6. Amon T et al (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric, Ecosyst Environ. https://doi.org/10.1016/j.agee.2006.05.007

    Article  Google Scholar 

  7. Andersson FAT et al (2004) Occurrence and abatement of volatile sulfur compounds during biogas production. J Air Waste Manag Assoc. https://doi.org/10.1080/10473289.2004.10470953

    Article  Google Scholar 

  8. Angelidaki I, Batstone DJ (2011) Anaerobic digestion: process. In: Solid waste technology and management. Wiley, pp 583–600

    Google Scholar 

  9. ASAE (2005) ASAE D384.2 MAR2005 Manure production and characteristics. ASAE. http://www.agronext.iastate.edu/immag/pubs/manure-prod-char-d384-2.pdf

  10. Aworanti OA, Agarry SE, Ogunleye OO (2017) Biomethanization of cattle manure, pig manure and poultry manure mixture in co-digestion with waste of pineapple fruit and content of chicken-gizzard—part I: kinetic and thermodynamic modelling studies. Open Biotechnol J. https://doi.org/10.2174/1874070701711010036

  11. Banks C (2004) Renewable energy from crops and agrowastes. http://www.cropgen.soton.ac.uk/deliverables/CROPGEN_PFAR2007.pdf

  12. Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res. https://doi.org/10.1016/S0043-1354(98)00371-6

    Article  Google Scholar 

  13. Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2008.11.027

    Article  Google Scholar 

  14. Blöchl E et al (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles

    Google Scholar 

  15. Budiyono et al (2010) The kinetic of biogas production rate from cattle manure in batch mode. World Acad Sci, Eng Technol

    Google Scholar 

  16. Castrillón L et al (2002) Anaerobic thermophilic treatment of cattle manure in UASB reactors. Waste Manag Res. https://doi.org/10.1177/0734247X0202000406

    Article  Google Scholar 

  17. Castrillón L et al (2011) Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour Technol. https://doi.org/10.1016/j.biortech.2011.05.047

    Article  Google Scholar 

  18. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  19. Chynoweth DP et al (1992) Sequential batch anaerobic composting of the organic fraction of municipal solid waste. Water Sci Technol

    Google Scholar 

  20. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol. https://doi.org/10.1016/S0168-6496(98)00086-5

    Article  Google Scholar 

  21. Dague RR, Habben CE, Pidaparti SR (1992) Initial studies on the anaerobic sequencing batch reactor. Water Sci Technol

    Google Scholar 

  22. Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.630

    Article  Google Scholar 

  23. Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. https://doi.org/10.1016/j.procbio.2005.03.062

    Article  Google Scholar 

  24. El-Mashad HM et al (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol. https://doi.org/10.1016/j.biortech.2003.07.013

    Article  Google Scholar 

  25. Energiforsk (2016) Biogas upgrading—technical review. http://lup.lub.lu.se/record/9e1c64bd-efe6-4cc4-88d5-c79eab06fcc5

  26. Fang C, Boe K, Angelidaki I (2011) Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.09.077

    Article  Google Scholar 

  27. FAO (2018) Food outlook - biannual report on global food markets – november 2018, p 104

    Google Scholar 

  28. Ferguson RMW, Coulon F, Villa R (2016) Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res. https://doi.org/10.1016/j.watres.2016.05.009

    Article  Google Scholar 

  29. Food and Agriculture Organization of the United Nations (2018) Shaping the future of livestock, p 20. http://www.fao.org/publications/card/en/c/I8384EN/

  30. Forster-Carneiro T, Pérez M, Romero LI (2008) Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour Technol. https://doi.org/10.1016/j.biortech.2008.01.052

    Article  Google Scholar 

  31. Gerardi MH (2003) The microbiology of anaerobic digesters. https://doi.org/10.1002/0471468967

  32. Gould MC (2015) Bioenergy and anaerobic digestion. In: Bioenergy. Academic Press, pp 297–317. https://doi.org/10.1016/B978-0-12-407909-0.00018-3

  33. Güngör-Demirci G, Demirer GN (2004) Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresour Technol. https://doi.org/10.1016/j.biortech.2003.10.019

    Article  Google Scholar 

  34. Hamilton DW, Gould MC (2012) Types of anaerobic digesters (module 3). US EPA

    Google Scholar 

  35. Hartmann H, Angelidaki I, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol

    Google Scholar 

  36. Herout M et al (2011) Biogas composition depending on the type of plant biomass used. Res Agric Eng

    Google Scholar 

  37. Hill DT, Bolte JP (2000) Methane production from low solid concentration liquid swine waste using conventional anaerobic fermentation. Bioresour Technol. https://doi.org/10.1016/S0960-8524(00)00008-0

    Article  Google Scholar 

  38. Ipcc WGI (2007) Climate change 2007: the physical science basis contribution of working group I. In: Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  39. Jha P, Schmidt S (2017) Reappraisal of chemical interference in anaerobic digestion processes. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.11.076

    Article  Google Scholar 

  40. Jhorar BS, Phogat V, Malik RS (1991) Kinetics of composting rice straw with glue waste at different carbon: nitrogen ratios in a semiarid environment. Arid Soil Res Rehabil. https://doi.org/10.1080/15324989109381289

    Article  Google Scholar 

  41. Jiang Y et al (2019) Ammonia inhibition and toxicity in anaerobic digestion: a critical review. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.100899

    Article  Google Scholar 

  42. Jingura RM, Kamusoko R (2017) Methods for determination of biomethane potential of feedstocks: a review. Biofuel Res J. https://doi.org/10.18331/BRJ2017.4.2.3

    Article  Google Scholar 

  43. Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric, Ecosyst Environ. https://doi.org/10.1016/S0167-8809(01)00350-4

    Article  Google Scholar 

  44. Jolivet E et al (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.02503-0

  45. Kafle GK, Chen L (2016) Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. https://doi.org/10.1016/j.wasman.2015.10.021

    Article  Google Scholar 

  46. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2005.09.015

    Article  Google Scholar 

  47. Karim K et al (2003) Anaerobic digestion of animal waste: effect of mixing. In: Sustainable world

    Google Scholar 

  48. Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol (United Kingdom). https://doi.org/10.1080/09593332008616828

    Article  Google Scholar 

  49. Komiyama M et al (2006) Biogas as a reproducible energy source: its steam reforming for electricity generation and for farm machine fuel. Int Congr Ser. https://doi.org/10.1016/j.ics.2006.03.008

    Article  Google Scholar 

  50. Krishna D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2014.07.024

    Article  Google Scholar 

  51. Layden NM et al (2007) ‘Autothermal thermophilic aerobic digestion (ATAD)—part I: review of origins, design, and process operation. J Environ Eng Sci 6(6):665–678. https://doi.org/10.1139/S07-015

    Article  CAS  Google Scholar 

  52. Lettinga G et al (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng. https://doi.org/10.1002/bit.260220402

    Article  Google Scholar 

  53. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2010.07.042

    Article  Google Scholar 

  54. Lin CY, Lay CH (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrog Energy. https://doi.org/10.1016/S0360-3199(03)00083-1

    Article  Google Scholar 

  55. Liu Y et al (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res. https://doi.org/10.1016/S0043-1354(02)00351-2

    Article  Google Scholar 

  56. Lomans BP et al (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci. https://doi.org/10.1007/s00018-002-8450-6

    Article  Google Scholar 

  57. Łukajtis R et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2018.04.043

    Article  Google Scholar 

  58. Luning L, Van Zundert EHM, Brinkmann AJF (2003) Comparison of dry and wet digestion for solid waste. Water Sci Technol

    Google Scholar 

  59. Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2007.07.026

    Article  Google Scholar 

  60. Marti Herrero J (2007) Transfer of low-cost plastic biodigester technology at household level in Bolivia. Livest Res Rural Dev

    Google Scholar 

  61. Mata-Alvarez J et al (2011) Co-digestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol. https://doi.org/10.3109/07388551.2010.525496

    Article  Google Scholar 

  62. Mata-Alvarez J et al (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2014.04.039

    Article  Google Scholar 

  63. McCarty PL (1982) One hundred years of anaerobic treatment. In: Anaerobic digestion 1981. Proc. symposium, Travemunde

    Google Scholar 

  64. McKinsey Zicari S (2003) Removal of hydrogen sulfide from biogas using cow-manure compost

    Google Scholar 

  65. Møller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2003.08.008

    Article  Google Scholar 

  66. MØller J, Christensen TH, Jansen JlaC (2010) Anaerobic digestion: mass balances and products. In: Solid waste technology & management. https://doi.org/10.1002/9780470666883.ch39

  67. Mumme J, Linke B, Tölle R (2010) Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol. https://doi.org/10.1016/j.biortech.2009.08.073

    Article  Google Scholar 

  68. Nasir IM, Mohd Ghazi TI, Omar R (2012) Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng Life Sci. https://doi.org/10.1002/elsc.201100150

    Article  Google Scholar 

  69. Omar R et al (2008) Anaerobic treatment of cattle manure for biogas production. In: AIChE annual meeting, conference proceedings

    Google Scholar 

  70. Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. In: IEA Bioenergy task, pp 1–34

    Google Scholar 

  71. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta - Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2008.08.012

    Article  Google Scholar 

  72. Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.06.030

    Article  Google Scholar 

  73. Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilisation—a review. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2011.07.005

    Article  Google Scholar 

  74. Razbani O, Mirzamohammad N, Assadi M (2011) Literature review and road map for using biogas in internal combustion engines. In: Third international conference on applied energy

    Google Scholar 

  75. Ritchie H, Roser M (2019) Meat and dairy production. Our World in Data

    Google Scholar 

  76. Rivard CJ et al (1988) Effects of addition of soluble oxidants on the thermophilic anaerobic digestion of biomass to methane. Appl Biochem Biotechnol. https://doi.org/10.1007/BF02779161

    Article  Google Scholar 

  77. Roos KF, Martin JB Jr, Moser MA (2004) A manual for developing biogas systems at commercial farms in the United States. In: AgSTAR handbook

    Google Scholar 

  78. Rosato MA (2017) Managing biogas plants. https://doi.org/10.1201/b22072

  79. Sanz JL, Rodríguez N, Amils R (1996) The action of antibiotics on the anaerobic digestion process. Appl Microbiol Biotechnol. https://doi.org/10.1007/s002530050865

    Article  Google Scholar 

  80. Şentürk E, Ince M, Onkal Engin G (2010) Kinetic evaluation and performance of a mesophilic anaerobic contact reactor treating medium-strength food-processing wastewater. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.01.034

    Article  Google Scholar 

  81. Sherman E (2016) Quantitative characterization of biogas quality

    Google Scholar 

  82. Shi XS et al (2017) Effect of hydraulic retention time on anaerobic digestion of wheat straw in the semicontinuous continuous stirred-tank reactors. Biomed Res Int. https://doi.org/10.1155/2017/2457805

    Article  Google Scholar 

  83. Shober AL, Maguire RO (2018) Manure management. In: Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09115-6

  84. Song YC, Kwon SJ, Woo JH (2004) Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res. https://doi.org/10.1016/j.watres.2003.12.019

    Article  Google Scholar 

  85. Speight JG (2017) Industrial organic chemistry. In: Environmental organic chemistry for engineers. Butterworth-Heinemann, pp 87–151. https://doi.org/10.1016/B978-0-12-804492-6.00003-4

  86. Stronach SM, Rudd T, Lester JN (1986) Anaerobic digestion processes in industrial wastewater treatment. Biotechnology monographs. https://doi.org/10.1007/978-3-642-71215-9. e-ISBN-13

  87. Sung S, Dague RR (1995) Laboratory studies on the anaerobic sequencing batch reactor. Water Environ Res. https://doi.org/10.2175/106143095x131501

    Article  Google Scholar 

  88. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology (Reading, England)

    Google Scholar 

  89. Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energy 32(7):1243–1257. https://doi.org/10.1016/J.RENENE.2006.04.020

    Article  CAS  Google Scholar 

  90. Tilche A, Vieira SMM (1991) Discussion report on reactor design of anaerobic filters and sludge bed reactors. Water Sci Technol

    Google Scholar 

  91. Trzcinski AP, Stuckey DC (2017) Microbial biomethane from solid wastes: principles and biotechnogical processes. In: Microbial fuels: technologies and applications. https://doi.org/10.1201/9781351246101

  92. Tursman JF, Cork DJ (1989) Influence of sulfate and sulfate-reducing bacteria on anaerobic digestion technology. Adv Biotechnol Processes

    Google Scholar 

  93. U.S. EPA (2001) Method 1683: total, fixed and volatile, solids and biosolids. Sci Technol

    Google Scholar 

  94. Van DP et al (2019) A review of anaerobic digestion systems for biodegradable waste: configurations, operating parameters, and current trends. Environ Eng Res. https://doi.org/10.4491/eer.2018.334

    Article  Google Scholar 

  95. Vandevivere P, De Baere L, Verstraete W (2003) Types of anaerobic digester for solid wastes. In: Biomethanization of the organic fraction of municipal solid wastes

    Google Scholar 

  96. Walker L, Charles W, Cord-Ruwisch R (2009) Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour Technol. https://doi.org/10.1016/j.biortech.2009.02.015

    Article  Google Scholar 

  97. Walker L, Cord-Ruwisch R, Sciberras S (2012) Performance of a commercial-scale DiCOMTM demonstration facility treating mixed municipal solid waste in comparison with laboratory-scale data. Bioresour Technol. https://doi.org/10.1016/j.biortech.2011.12.079

    Article  Google Scholar 

  98. Wang X et al (2012) Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.06.058

    Article  Google Scholar 

  99. Ward AJ et al (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  Google Scholar 

  100. Water Environment Federation (2008) Operation of municipal wastewater treatment plants: MoP No. 11, 6th edn. McGraw-Hill Education, New York. https://www.accessengineeringlibrary.com/content/book/9780071543675

  101. Wilkie A (2005) Anaerobic digestion of dairy manure: design and process considerations. In: Dairy manure management: treatment, handling, …

    Google Scholar 

  102. Yadvika et al (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2004.02.010

    Article  Google Scholar 

  103. Yetilmezsoy K, Sakar S (2008) Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton’s oxidation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2007.06.013

    Article  Google Scholar 

  104. Yohaness MT (2010) Biogas potential from cow manure—influence of diet

    Google Scholar 

  105. Yuan H, Zhu N (2016) Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.12.261

    Article  Google Scholar 

  106. Zang B et al (2016) Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting. Waste Manag. https://doi.org/10.1016/j.wasman.2016.06.026

    Article  Google Scholar 

  107. Zhang B et al (2017) Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling. Earth Syst Sci Data. https://doi.org/10.5194/essd-9-667-2017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Petracchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tratzi, P., Paolini, V., Torre, M., Palma, A., Petracchini, F. (2023). Anaerobic Digestion Manure Conversion and Recycling. In: Jawaid, M., Khan, A. (eds) Manure Technology and Sustainable Development. Sustainable Materials and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4120-7_2

Download citation

Publish with us

Policies and ethics