Skip to main content

Synthetic Biology Tools in Cyanobacterial Biotechnology: Recent Developments and Opportunities

  • Chapter
  • First Online:
Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 449 Accesses

Abstract

Cyanobacteria are ubiquitous microorganisms that play a significant role in the maintenance of the earth’s ecology. Owing to the smaller and completely sequenced genome, some strains have emerged as appropriate candidates for manipulating their genetic sequences to enhance growth and photosynthesis under distinct environmental fluctuations. Synthetic biology tools have arisen as an indispensable means for scaling up the natural circadian rhythm of prokaryotes and eukaryotes, thus improving the physiological and metabolic processes to promote their growth under adverse environmental conditions. Although the availability of synthetic biology tools for engineering multiple pathways in cyanobacteria is still limited, in the past few years significant progress has been made in developing genetic tools including promoters, sRNA, RBS, riboswitches and CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas-9 systems for engineering cyanobacteria with improved biomass production and product development. Systematic rewiring of physiological, biochemical and molecular pathways may significantly improve the growth and production of engineered cyanobacteria under stressful environments. In this chapter, recent advancement in synthetic biology tools and their application in cyanobacteria for sustainable biotechnologies is reviewed. Furthermore, it also provides valuable insights into their future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Sakai Y, Nakashima S, Araki M, Yoshida W, Sode K, Ikebukuro K (2014) Design of riboregulators for control of cyanobacterial (Synechocystis) protein expression. Biotechnol Lett 36:287–294

    Article  CAS  PubMed  Google Scholar 

  • Abernathy MH, Czajka JJ, Allen DK, Hill NC, Cameron JC, Tang YJ (2019) Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity. Metab Eng 54:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal C, Sen S, Singh S, Rai S, Singh PK, Singh VK, Rai LC (2014) Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J Proteome 96:271–290

    Article  CAS  Google Scholar 

  • Agrawal C, Sen S, Yadav S, Rai S, Rai LC (2015) A novel aldo-keto reductase (AKR17A1) of Anabaena sp. PCC 7120 degrades the rice field herbicide butachlor and confers tolerance to abiotic stresses in E. coli. PLoS One 10(9):e0137744

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrawal C, Yadav S, Rai S, Chatterjee A, Sen S, Rai R, Rai LC (2017) Identification and functional characterisation of four novel aldo/keto reductases in Anabaena sp. PCC 7120 by integrating wet lab with in silico approaches. Funct Integr Genomic 17:413–425

    Article  CAS  Google Scholar 

  • Aikawa S, Ho SH, Nakanishi A, Chang JS, Hasunuma T, Kondo A (2015) Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnol J 10(6):886–898

    Article  CAS  PubMed  Google Scholar 

  • Banerjee M, Raghavan PS, Ballal A, Rajaram H, Apte SK (2013) Oxidative stress management in the filamentous, heterocystous, diazotrophic cyanobacterium, Anabaena PCC7120. Photosynth Res 118(1-2):59–70

    Article  CAS  Google Scholar 

  • Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2(7):17092

    Article  CAS  PubMed  Google Scholar 

  • Behle A, Saake P, Axmann IM (2019) Comparative analysis of inducible promoters in cyanobacteria. BioRxiv:757948

    Google Scholar 

  • Behler J, Vijay D, Hess WR, Akhtar MK (2018) CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends Biotechnol 36(10):996–1010

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Pei G, Sun T, Chen Z, Chen L, Zhang W (2018) Regulation mechanism mediated by trans-encoded sRNA Nc117 in short chain alcohols tolerance in Synechocystis sp. PCC 6803. Front Mcrobiol 9:863

    Article  Google Scholar 

  • Brand LA, Owttrim GW (2017) Cyanobacterial biofactories: combining evolved and synthetic genetic regulatory mechanisms to yield carbon-neutral bioproducts. PostDoc J 5:7

    Article  Google Scholar 

  • Brenes-Álvarez M, Olmedo-Verd E, Vioque A, Muro-Pastor AM (2016) Identification of conserved and potentially regulatory small RNAs in heterocystous cyanobacteria. Front Microbiol 7:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, Lee JJ, Golden SS, Palsson BO (2016) Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proc Natl Acad Sci U S A 113(51):E8344–E8353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano M, Holland SC, Artier J, Burnap RL, Ghirardi M, Morgan JA, Yu J (2018) Glycogen synthesis and metabolite overflow contribute to energy balancing in cyanobacteria. Cell Rep 23(3):667–672

    Article  CAS  PubMed  Google Scholar 

  • Carroll AL, Case AE, Zhang A, Atsumi S (2018) Metabolic engineering tools in model cyanobacteria. Metab Eng 50:47–56

    Article  CAS  PubMed  Google Scholar 

  • Carter SR, Warner CM (2018) Trends in synthetic biology applications, tools, industry, and oversight and their security implications. Health Secure 16(5):320–333

    Article  Google Scholar 

  • Chappell J, Watters KE, Takahashi MK, Lucks JB (2015) A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr Opin Chem Biol 28:47–56

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia AK, Apte SK (2009) Overexpression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. Appl Environ Microbiol 75(18):6008–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaurasia N, Mishra Y, Chatterjee A, Rai R, Yadav S, Rai LC (2017) Overexpression of phytochelatin synthase (pcs) enhances abiotic stress tolerance by altering the proteome of transformed Anabaena sp. PCC 7120. Protoplasma 254(4):1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Zhang S, Sun H, Qiao C, Luan G, Lu X (2019) Adopting a theophylline-responsive riboswitch for flexible regulation and understanding of glycogen metabolism in Synechococcus elongatus PCC7942. Front Microbiol 10:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin T, Okuda Y, Ikeuchi M (2019) Improved sorbitol production and growth in cyanobacteria using promiscuous haloacid dehalogenase-like hydrolase. J Biotechnol X(1):100002

    Article  Google Scholar 

  • Cotterill V, Hamilton DP, Puddick J, Suren A, Wood SA (2019) Phycocyanin sensors as an early warning system for cyanobacteria blooms concentrations: a case study in the Rotorua lakes. New Zeal J Mar Fresh:1–16

    Google Scholar 

  • Dersch P, Khan MA, Mühlen S, Görke B (2017) Roles of regulatory RNAs for antibiotic resistance in bacteria and their potential value as novel drug targets. Front Microbiol 8:803

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG (2018) Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 9(1):2489

    Article  PubMed  PubMed Central  Google Scholar 

  • Du W, Burbano PC, Hellingwerf KJ, dos Santos FB (2018) Challenges in the application of synthetic biology toward synthesis of commodity products by cyanobacteria via “Direct Conversion”. In: Synthetic biology of cyanobacteria. Springer, Singapore, pp 3–26

    Chapter  Google Scholar 

  • Engler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JD, Patron NJ, Marillonnet S (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3(11):839–843

    Article  CAS  PubMed  Google Scholar 

  • Eriksson MJ, Clarke AK (1996) The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178(16):4839–4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fokum E, Zabed HM, Guo Q, Yun J, Pang H, An Y, Li W, Qi X (2019) Metabolic engineering of bacterial strains using CRISPR/Cas9 systems for biosynthesis of value-added products. Food Biosci 28:125–132

    Article  CAS  Google Scholar 

  • Georg J, Kostova G, Vuorijoki L, Schön V, Kadowaki T, Huokko T, Baumgartner D, Hihara Y (2017) Acclimation of oxygenic photosynthesis to iron starvation is controlled by the sRNA IsaR1. Curr Biol 27(10):1425–1436

    Article  CAS  PubMed  Google Scholar 

  • Giner-Lamia J, Hernández-Prieto M, Futschik E, M. (2018) ChIP-seq experiment and data analysis in the cyanobacterium Synechocystis sp. PCC 6803. BioProtocol 8:1–20

    Google Scholar 

  • Gopalakrishnan S, Maranas CD (2015) 13C metabolic flux analysis at a genome-scale. Metab Eng 32:12–22

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsson S, Agudo L, Nogales J (2017) Applications of genome-scale metabolic models of microalgae and cyanobacteria in biotechnology. In: Microalgae-based biofuels and bioproducts: From feedstock cultivation to end-products (93). Woodhead Publishing, Cambridge, UK

    Google Scholar 

  • Hagemann M, Hess WR (2018) Systems and synthetic biology for the biotechnological application of cyanobacteria. Curr Opin Biotech 49:94–99

    Article  CAS  PubMed  Google Scholar 

  • Hendry JI, Gopalakrishnan S, Ungerer J, Pakrasi HB, Tang YJ, Maranas CD (2019) Genome-scale fluxome of Synechococcus elongatus UTEX 2973 using transient 13C-labeling data. Plant Physiol 179(2):761–769

    Article  CAS  PubMed  Google Scholar 

  • Higo A, Isu A, Fukaya Y, Ehira S, Hisabori T (2017) Application of CRISPR interference for metabolic engineering of the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 59(1):119–127

    Article  Google Scholar 

  • Hu J, Li T, Xu W, Zhan J, Chen H, He C, Wang Q (2017) Small antisense RNA RblR positively regulates RuBisCo in Synechocystis sp. PCC 6803. Front Microbiol 8:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC (2016) CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Factories 15(1):196

    Article  Google Scholar 

  • Immethun CM, DeLorenzo DM, Focht CM, Gupta D, Johnson CB, Moon TS (2017) Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803. Biotechnol Bioeng 114(7):1561–1569

    Article  CAS  PubMed  Google Scholar 

  • Immethun CM, Ng KM, DeLorenzo DM, Waldron-Feinstein B, Lee YC, Moon TS (2016) Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803. Biotechnol Bioeng 113(2):433–442

    Article  CAS  PubMed  Google Scholar 

  • Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  • Jazmin LJ, Xu Y, Cheah YE, Adebiyi AO, Johnson CH, Young JD (2017) Isotopically nonstationary 13C flux analysis of cyanobacterial isobutyraldehyde production. Metab Eng 42:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Lindblad P, Bhaya D (2019) Building an inducible T7 RNA polymerase/T7 promoter circuit in Synechocystis sp. PCC6803. ACS. Synth Biol 8(4):655–660

    Article  CAS  Google Scholar 

  • Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbons WR (2016) Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: a review. Biotechnol Prog 32(6):1357–1371

    Article  CAS  PubMed  Google Scholar 

  • Joshi CJ, Peebles CA, Prasad A (2017) Modeling and analysis of flux distribution and bioproduct formation in Synechocystis sp. PCC 6803 using a new genome-scale metabolic reconstruction. Algal Res 27:295–310

    Article  Google Scholar 

  • Kaczmarzyk D, Anfelt J, Särnegrim A, Hudson EP (2014) Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystissp. PCC6803. J Biotechnol 182–183:50–60

    Google Scholar 

  • Klahn S, Bolay P, Wright PR, Atilho RM, Brewer KI, Hagemann M, Breaker RR, Hess WR (2018) A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 46(19):10082–10094

    PubMed  PubMed Central  Google Scholar 

  • Klanchui A, Dulsawat S, Chaloemngam K, Cheevadhanarak S, Prommeenate P, Meechai A (2018) An improved genome-scale metabolic model of Arthrospira platensis c1 (iak888) and its application in glycogen overproduction. Meta 8(4):84

    Google Scholar 

  • Knoop H, Steuer R (2015) A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front Bioeng Biotechnol 3:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Ota M, Taton A, Golden JW (2019) Excision of the 59-kb fdxN DNA element is required for transcription of the nifD gene in Anabaena PCC 7120 heterocysts. New Zeal J Bot 57(2):76–92

    Article  Google Scholar 

  • Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38:293–302

    Article  CAS  PubMed  Google Scholar 

  • Lin PC, Saha R, Zhang F, Pakrasi HB (2017) Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 7(1):17503

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindblad P (2018) Hydrogen production using novel photosynthetic cell factories. In: Cyanobacterial hydrogen production: design of efficient organisms. Microalgal hydrogen production: Achievements and perspectives, G. Royal Society of Chemistry, UK, pp 323–334

    Chapter  Google Scholar 

  • Liu D, Pakrasi HB (2018) Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Factories 17(1):48

    Article  Google Scholar 

  • Luan G, Lu X (2018) Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 36(2):430–442

    Article  CAS  PubMed  Google Scholar 

  • Malatinszky D, Steuer R, Jones PR (2017) A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120. Plant Physiol 173(1):509–523

    Article  CAS  PubMed  Google Scholar 

  • Marques WL, Raghavendran V, Stambuk BU, Gombert AK (2016) Sucrose and Saccharomyces cerevisiae: a relationship most sweet. FEMS Yeast Res 16(1)

    Google Scholar 

  • Masepohl B, Gorlitz K, Bohme H (1996) Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta 1307:26–30

    Article  PubMed  Google Scholar 

  • McEwen JT, Kanno M, Atsumi S (2016) 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metab Eng 36:28–36

    Article  CAS  PubMed  Google Scholar 

  • McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164(4):2247–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao R, Wegelius A, Durall C, Liang F, Khanna N, Lindblad P (2017) Engineering cyanobacteria for biofuel production. In: Modern topics in the phototrophic prokaryotes. Springer, Cham, pp 351–393

    Chapter  Google Scholar 

  • Mohammadi R, Zahiri J, Niroomand MJ (2018) Reconstruction and modeling of integrated metabolic network of a cyanobacterium to increase the production of biofuels. Modares J Biotechnol 9(2):193–199

    Google Scholar 

  • Mougiakos I, Bosma EF, Ganguly J, van der Oost J, van Kranenburg R (2018) Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects. Curr Opin Biotechnol 50:146–157

    Article  CAS  PubMed  Google Scholar 

  • Nagel R (2019) A bridge between kingdoms: introduction of a golden gate-based tool kit for cyanobacteria. Plant Physiol 180(1):10–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54(10):1724–1735

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Suzuki N, Roy SK (2000) Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett 483(2–3):169–174

    Article  CAS  PubMed  Google Scholar 

  • Narayan OP, Kumari N, Rai LC (2010) Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses. Biochem Biophys Res Commun 394(1):163–169

    Article  CAS  PubMed  Google Scholar 

  • Niu TC, Lin GM, Xie LR, Wang ZQ, Xing WY, Zhang JY, Zhang CC (2018) Expanding the potential of CRISPR-Cpf1-based genome editing technology in the cyanobacterium Anabaena PCC 7120. ACS Synth Biol 8(1):170–180

    Article  PubMed  Google Scholar 

  • O'brien CL, Bringer MA, Holt KE, Gordon DM, Dubois AL, Barnich ND, Darfeuille-Michaud A, Pavli P (2017) Comparative genomics of Crohn’s disease-associated adherent-invasive Escherichia coli. Gut 66(8):1382–1389

    Article  CAS  PubMed  Google Scholar 

  • Ohbayashi R, Akai H, Yoshikawa H, Hess WR, Watanabe S (2016) A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. J Gen Appl Microbiol 3:154–159

    Article  Google Scholar 

  • Olmedo-Verd E, Brenes-Álvarez M, Vioque A, Muro-Pastor AM (2019) A heterocyst-specific antisense RNA contributes to metabolic reprogramming in Nostoc sp. PCC 7120. Plant Cell Physiol 60:1646–1655

    Article  CAS  PubMed  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotech 28(3):245

    Article  CAS  Google Scholar 

  • Pandey S, Shrivastava AK, Singh VK, Rai R, Singh PK, Rai S, Rai LC (2013) A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct Integr Genomic 13(1):43–55

    Article  CAS  Google Scholar 

  • Pei G, Sun T, Chen S, Chen L, Zhang W (2017) Systematic and functional identification of small non-coding RNAs associated with exogenous biofuel stress in cyanobacterium Synechocystis sp. PCC 6803. Biotechnol Biofuels 10(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez AA, Rodionov DA, Bryant DA (2016) Identification and regulation of genes for cobalamin transport in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 198(19):2753–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian H, Lu T, Song H, Lavoie M, Xu J, Fan X, Pan X (2017) Spatial variability of cyanobacteria and heterotrophic bacteria in Lake Taihu (China). B Environ Contam Tox 99(3):380–384

    Article  CAS  Google Scholar 

  • Qian X, Kim MK, Kumaraswamy GK, Agarwal A, Lun DS, Dismukes GC (2017a) Flux balance analysis of photoautotrophic metabolism: uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. BBA-Bioenergetics 1858(4):276–287

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Rai R, Singh PK, Rai LC (2019) Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen. Aquat Toxicol 105238

    Google Scholar 

  • Sakamoto I, Abe K, Kawai S, Tsukakoshi K, Sakai Y, Sode K, Ikebukuro K (2018) Improving the induction fold of riboregulators for cyanobacteria. RNA Biol 15(3):353–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos-Merino M, Singh AK, Ducat DC (2019) New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front Bioeng Biotech 7:33

    Article  Google Scholar 

  • Saraf P, Sao A, Bagchi D (2017) Antioxidant modulation in response to selenium induced oxidative stress in unicellular cyanobacterium Synechococcus elongatus PCC 7942. Afr J Microbiol Res 11(33):1321–1328

    Article  CAS  Google Scholar 

  • Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD (2019) A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol 15(1):e1006692

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebesta J, Werner A, Peebles CAM (2019) Genetic Engineering of Cyanobacteria: Design, implementation, and characterization of recombinant Synechocystis sp. PCC 6803. In: Microbial metabolic engineering. Humana Press, New York, pp 139–154

    Google Scholar 

  • Sen S, Rai R, Chatterjee A, Rai S, Yadav S, Agrawal C, Rai LC (2019) Molecular characterization of two novel proteins All1122 and Alr0750 of Anabaena PCC 7120 conferring tolerance to multiple abiotic stresses in Escherichia coli. Gene 685:230–241

    Article  CAS  PubMed  Google Scholar 

  • Sengupta A, Pakrasi HB, Wangikar PP (2018) Recent advances in synthetic biology of cyanobacteria. Appl Microbiol Biotechnol 102(13):5457–5471

    Article  CAS  PubMed  Google Scholar 

  • Shabestary K, Hudson EP (2016) Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metab Eng Commun 3:216–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastava AK, Pandey S, Dietz KJ, Singh PK, Singh S, Rai R, Rai LC (2016) Over expression of AhpC enhances stress tolerance and N2-fixation in Anabaena by upregulating stress responsive genes. BBA General Subjects 1860:2576–2588

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Anurag K, Apte SK (2013) High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities. Photosynth Res 118(1-2):71–81

    Article  CAS  Google Scholar 

  • Singh P, Kumar N, Jethva M, Yadav S, Kumari P, Thakur A, Kushwaha HR (2018) Riboswitch regulation in cyanobacteria is independent of their habitat adaptations. Physiol Mol Biol Plants 24(2):315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Shrivastava AK, Singh S, Chatterjee A, Rai LC (2017) Alr2954 of Anabaena sp. PCC 7120 with ADP-ribose pyrophosphatase activity bestows abiotic stress tolerance in Escherichia coli. Funct Integr Genomic 17:9–52

    Article  Google Scholar 

  • Singh V, Chaudhary DK, Mani I, Dhar PK (2016) Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renew Sust Energ Rev 60:1–10

    Article  Google Scholar 

  • Srivastava A, Brilisauer K, Rai AK, Ballal A, Forchhammer K, Tripathi AK (2017) Down-regulation of the alternative sigma factor SigJ confers a photoprotective phenotype to Anabaena PCC 7120. Plant Cell Physiol 58(2):287–297

    CAS  PubMed  Google Scholar 

  • Su HY, Chou HH, Chow TJ, Lee TM, Chang JS, Huang WL, Chen HJ (2017) Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock. Bioresour Technol 244:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Li S, Song X, Diao J, Chen L, Zhang W (2018) Toolboxes for cyanobacteria: recent advances and future direction. Biotechnol Adv 36(4):1293–1307

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Xu L, Wu L, Song Z, Chen L, Zhang W (2017) Identification of a new target slr0946 of the response regulator Sll0649 involving cadmium tolerance in Synechocystis sp. PCC 6803. Front Microbiol 8:1582

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan B, Ng CM, Nshimyimana JP, Loh LL, Gin KYH, Thompson JR (2015) Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol 6:1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Taton A, Ma AT, Ota M, Golden SS, Golden JW (2017) NOT gate genetic circuits to control gene expression in cyanobacteria. ACS Synth Biol 6(12):2175–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel K, Mulaku E, Dandapani H, Nagy C, Aro EM, Kallio P (2018) Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Factories 17(1):34

    Article  Google Scholar 

  • Ueno K, Sakai Y, Shono C, Sakamoto I, Tsukakoshi K, Hihara Y, Sode K, Ikebukuro K (2017) Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 101(23–24):8465–8474

    Article  CAS  PubMed  Google Scholar 

  • Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan R, Gale GA, Schiavon AA, Puzorjov A, Malin J, Gillespie MD, Vavitsas K, Lea-Smith DJ (2019) CyanoGate: A modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant Physiol 180(1):39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veetil VP, Angermayr SA, Hellingwerf KJ (2017) Ethylene production with engineered Synechocystis sp PCC 6803 strains. Microb Cell Factories 16(1):34

    Article  Google Scholar 

  • Vijay D, Akhtar MK, Hess WR (2019) Genetic and metabolic advances in the engineering of cyanobacteria. Curr Opin Biotechnol 59:150–156

    Article  CAS  PubMed  Google Scholar 

  • Waditee-Sirisattha R, Kageyama H, Tanaka Y, Fukaya M, Takabe T (2017) Overexpression of halophilic serine hydroxymethyltransferase in fresh water cyanobacterium Synechococcus elongatus PCC7942 results in increased enzyme activities of serine biosynthetic pathways and enhanced salinity tolerance. Arch Microbiol 199(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Waditee-Sirisattha R, Singh M, Kageyama H, Sittipol D, Rai AK, Takabe T (2012) Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt. Arch Microbiol 194(11):909–914

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Eckert C, Maness PC, Yu J (2017) A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 7(1):276–286

    Article  PubMed  Google Scholar 

  • Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15(1):115

    Article  Google Scholar 

  • Xiao Q, Min T, Ma S, Hu L, Chen H, Lu D (2018) Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV. Mol Gen Genomics 293(4):1051–1060

    Article  CAS  Google Scholar 

  • Yadav S, Rai R, Shrivastava AK, Singh PK, Sen S, Chatterjee A, Rai S, Singh S, Rai LC (2018) Cyanobacterial biodiversity and biotechnology: a promising approach for crop improvement. In: Crop improvement through microbial biotechnology. Elsevier, pp 195–219

    Google Scholar 

  • Yao L, Cengic I, Anfelt J, Hudson EP (2015) Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5(3):207–212

    Article  PubMed  Google Scholar 

  • Yoshikawa K, Aikawa S, Kojima Y, Toya Y, Furusawa C, Kondo A, Shimizu H (2015) Construction of a genome-scale metabolic model of Arthrospira platensis NIES-39 and metabolic design for cyanobacterial bioproduction. PLoS One 10(12):e0144430

    Article  PubMed  PubMed Central  Google Scholar 

  • Zess EK, Begemann MB, Pfleger BF (2016) Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113(2):424–432

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhu T, Cai Z, Li Y (2016) From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Factories 15(1):2

    Article  Google Scholar 

Download references

Acknowledgements

L.C. Rai thanks the Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), SERB Govt of India and NASI Senior Scientist Platinum Jubilee Fellowship for financial support. Krishna Kumar Rai is thankful to NASI for Research associateship (RA), Ruchi Rai to DST-New Delhi for Women Scientist Scheme A (WOSA), and Shilpi Singh to DS Kothari, UGC, New Delhi for Post-Doctoral Fellowship (DSKPDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, K.K., Rai, R., Singh, S., Rai, L.C. (2022). Synthetic Biology Tools in Cyanobacterial Biotechnology: Recent Developments and Opportunities. In: Singh, U.B., Rai, J.P., Sharma, A.K. (eds) Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4101-6_10

Download citation

Publish with us

Policies and ethics