Skip to main content

A Review of Ergonomic Risk Assessment Techniques Employed in Construction Industry

  • Conference paper
  • First Online:
Advances in Construction Safety

Abstract

Majority of construction work-related injuries are non-fatal in nature which are the result of improper human body motions, weight handling and tools being used. Construction activities involve continuous or sudden stress on a worker’s muscles and skeletal system (for example, tendons, muscle tissue, ligaments and bone structure) which result in musculoskeletal disorders (MSDs) over a period of time. Although hazard assessment has proven to be a working to reduce the frequency of these injury risk factors which could lead to work-related musculoskeletal disorders (WRMSDs), the field remains still in developing phase due to lack of awareness and knowledge among construction people towards the assessment, performance and lacking nature of the techniques. This research reviews the general techniques that are employed in construction industry to determine WRMSDs and determines the limits, benefits and how is the research in ergonomic analysis field evolving into wearable, automatic, non-invasive, real-time monitoring techniques of bad postures assessment from self-report measures, expert observation methods, direct skin contact measurement systems. The assessment techniques which are being used are broadly categorised into observation, self-report, remote sensing, direct measurement and wearable body sensor devices. This research gives the overall view of the techniques employed and the area, where further research is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor, P., Schaub, K., Caragnano, G., Britzke, B., & Bruder, R. (July 2013). Theoretical issues in ergonomics science. 37–41. https://doi.org/10.1080/1463922X.2012.678283

  2. United States Bureau of Labor Statistics (2011) Fact sheet|Occupational injuries and illnesses resulting in musculoskeletal disorders (MSDs) | May 2020,” U.S. Bureau of Labor Statistics, 2020. https://www.bls.gov/iif/oshwc/case/msds.htm#:~:text=FactSheet%20%7C Occupational injuries and, disorders (MSDs) %7C May 2020&text=The incidence rate of MSD, (see chart 1)

  3. M. Conditions No Title. https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions

  4. Vishwambhar, V., Reddy, G. M. M., Nisha, B., & Prabhushankar, T. G. Musculoskeletal morbidity among construction workers: A cross-sectional community-based study. https://doi.org/10.4103/0019-5278.203134

  5. Schneider, S. P. (2001). Musculoskeletal injuries in construction: A review of the literature. Applied Occupational and Environmental Hygiene, 16(11), 1056–1064. https://doi.org/10.1080/104732201753214161

    Article  Google Scholar 

  6. Harold, C., & Daniel, U. (2013). Work-related musculoskeletal disorders among workers in brick making factory and building construction sites: An overview. International Journal of Engineering Research Technology, 2(6), 552–577.

    Google Scholar 

  7. Yelin, E. H., Trupin, L. S., & Sebesta, D. S. (1999). Transitions in employment, morbidity, and disability among persons ages 51–61 with musculoskeletal and non-musculoskeletal conditions in the US, 1992–1994. Arthritis and Rheumatism, 42(4), 769–779. https://doi.org/10.1002/1529-0131(199904)42:4%3c769::AID-ANR22%3e3.0.CO;2-M

    Article  Google Scholar 

  8. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sørensen F, Andersson G, Jørgensen K (1988). Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Clinica Biomechanics, 3(1), 54. https://doi.org/10.1016/0268-0033(88)90149-0

  9. Mustalampi, S., HaKkinen, A., Kautiainen, H., Weir, A., & Ylinen, J. (2013). Responsiveness ofmuscle tone characteristics to progressive force production. Journal of Strength and Conditioning Research, 27(1), 159–165. https://doi.org/10.1519/JSC.0b013e3182518023

    Article  Google Scholar 

  10. Li, G., & Buckle, P. (1999). Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods. Ergonomics, 42(5), 674–695. https://doi.org/10.1080/001401399185388

    Article  Google Scholar 

  11. Jaffar, N., Abdul-Tharim, A. H., Mohd-Kamar, I. F., & Lop, N. S. (2011). A literature review of ergonomics risk factors in construction industry. Procedia Engineering, 20, 89–97. https://doi.org/10.1016/j.proeng.2011.11.142

    Article  Google Scholar 

  12. David, G. C. (2005). Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occupational Medicine (Chic. Ill), 55(3), 190–199. https://doi.org/10.1093/occmed/kqi082

  13. Inyang, N., Al-Hussein, M., El-Rich, M., & Al-Jibouri, S. (2012). Ergonomic analysis and the need for its integration for planning and assessing construction tasks. Journal of Construction Engineering and Management, 138(12), 1370–1376. https://doi.org/10.1061/(asce)co.1943-7862.0000556

    Article  Google Scholar 

  14. Tak, S. W., et al. (2011). Physical ergonomic hazards in highway tunnel construction: Overview from the construction occupational health program. Applied Ergonomics, 42(5), 665–671. https://doi.org/10.1016/j.apergo.2010.10.001

    Article  Google Scholar 

  15. Roja, Z., Kalkis, H., Reinholds, I., & Cekuls, A. (2016). Ergonomics risk analysis in construction operations. Agronomy Research, 14(1), 211–219.

    Google Scholar 

  16. Kadefors, R., & Forsman, M. (2000). Ergonomic evaluation of complex work: A participative approach employing video-computer interaction, exemplified in a study of order picking. International Journal of Industrial Ergonomics, 25(4), 435–445. https://doi.org/10.1016/S0169-8141(99)00042-6

    Article  Google Scholar 

  17. Wang, D., Dai, F., & Ning, X. (2015). Risk assessment of work-related musculoskeletal disorders in construction: State-of-the-art review. Journal of Construction Engineering and Management, 141(6), 04015008. https://doi.org/10.1061/(asce)co.1943-7862.0000979

    Article  Google Scholar 

  18. Dane, D., Feuerstein, M., Huang, G. D., Dimberg, L., Ali, D., & Lincoln, A. (2002). Measurement properties of a self-report index of ergonomic exposures for use in an office work environment. Journal of Occupational and Environmental Medicine, 44(1), 73–81. https://doi.org/10.1097/00043764-200201000-00012

    Article  Google Scholar 

  19. López-Aragón, L., López-Liria, R., Callejón-Ferre, Á. J., & Gómez-Galán M. (2017). Applications of the standardized Nordic questionnaire: A review. Sustainability, 9(9), 1–42. https://doi.org/10.3390/su9091514

  20. Buchholz, B., Paquet, V., Punnett, L., Lee, D., & Moir, S. (1996). PATH: A work sampling-based approach to ergonomic job analysis for construction and other non-repetitive work. Applied Ergonomics, 27(3), 177–187. https://doi.org/10.1016/0003-6870(95)00078-X

    Article  Google Scholar 

  21. Lynn, M., & Corlett, N. (1993). RULA: A survey method for the investigation of work-related upper limb disorders. Applied Ergonomics, 24(2), 91–99.

    Article  Google Scholar 

  22. McAtamney, L., & Hignett, S. (2004). Rapid entire body assessment. Handbook Human Factors Ergonomics Methods, 31, 8–1–8–11. https://doi.org/10.1201/9780203489925.ch8

  23. Ketola, R., Toivonen, IV. R., & Viikari-Juntura, E. (Sept 2014). Interobserver repeatability and validity of an observation method to assess physical loads imposed on the upper extremities. 37–41. https://doi.org/10.1080/00140130118669

  24. Chander, D. S., & Cavatorta, M. P. (2017). International journal of industrial ergonomics an observational method for postural ergonomic risk assessment. International Journal of Industrial Ergonomics, 57, 32–41. https://doi.org/10.1016/j.ergon.2016.11.007

    Article  Google Scholar 

  25. Golabchi, A., Han, S., Fayek, A. R., & AbouRizk, S. (2017). Stochastic modeling for assessment of human perception and motion sensing errors in ergonomic analysis. Journal of Computing in Civil Engineering, 31(4), 04017010. https://doi.org/10.1061/(asce)cp.1943-5487.0000655

    Article  Google Scholar 

  26. Kim, S., & Nussbaum, M. A. (2013). Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Ergonomics, 56(2), 314–326. https://doi.org/10.1080/00140139.2012.742932

    Article  Google Scholar 

  27. Lloyd, D. G., & Besier, T. F. (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 36(6), 765–776. https://doi.org/10.1016/S0021-9290(03)00010-1

    Article  Google Scholar 

  28. Figueroa, P. J., Leite, N. J., & Barros, R. M. L. (2003). A flexible software for tracking of markers used in human motion analysis. Computer Methods and Programs in Biomedicine, 72(2), 155–165. https://doi.org/10.1016/S0169-2607(02)00122-0

    Article  Google Scholar 

  29. Antwi-afari, M. F., Li, H., Edwards, D. J., Pärn, E. A., Seo, J., & Wong, A. Y. L. (2017). Automation in construction biomechanical analysis of risk factors for work-related musculoskeletal disorders during repetitive lifting task in construction workers. 83(6), 41–47. https://doi.org/10.1016/j.autcon.2017.07.007

  30. Yamada, T., et al. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296–301. https://doi.org/10.1038/nnano.2011.36

    Article  Google Scholar 

  31. Hu, B., Ning, X., & Nimbarte, A. D. (2013). The changes of lumbar muscle flexion-relaxation response due to laterally slanted ground surfaces. Ergonomics, 56(8), 1295–1303. https://doi.org/10.1080/00140139.2013.803161

    Article  Google Scholar 

  32. Chang, C., Hsiang, S., Dempsey, P. G., & Mcgorry, R. W. (2003). A computerized video coding system for biomechanical analysis of lifting tasks. 32, 239–250. https://doi.org/10.1016/S0169-8141(03)00065-9

  33. Boot, R. L., Faber, G. S., Xu, X., Bongers, P. M., Coenen, P., & Kingma, I. (2011). Estimation of low back moments from video analysis: A validation study. 44, 2369–2375. https://doi.org/10.1016/j.jbiomech.2011.07.005

  34. Warade, S., Aghav, J., Claude, P., & Udayagiri, S. (2012). Real-time detection and tracking with Kinect. International Conference Computer Information Technology, 6(16–17), 86–89.

    Google Scholar 

  35. Diego-Mas, J. A., & Alcaide-Marzal, J. (2014). Using KinectTM sensor in observational methods for assessing postures at work. Applied Ergonomics, 45(4), 976–985. https://doi.org/10.1016/j.apergo.2013.12.001

    Article  Google Scholar 

  36. Han, S., & Lee, S. (2013). A vision-based motion capture and recognition framework for behavior-based safety management. Automation in Construction, 35, 131–141. https://doi.org/10.1016/j.autcon.2013.05.001

    Article  Google Scholar 

  37. Khoshelham, K. (2012). Accuracy analysis of kinect depth data. International Archiv Photogrammetric Remote Sensory Spatial Information Science, XXXVIII-5(8), 133–138. https://doi.org/10.5194/isprsarchives-xxxviii-5-w12-133-2011

  38. Jones, T., & Kumar, S. (2010). Comparison of ergonomic risk assessment output in four sawmill jobs. International Journal of Occupational safety and ergonomics, 16(1), 105–111

    Google Scholar 

  39. Li, K. W., & Yu, R. (2011). Assessment of grip force and subjective hand force exertion under handedness and postural conditions. Applied ergonomics, 42(6), 929–933

    Google Scholar 

  40. Lloyd, D. G., & Besier, T. F. (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of biomechanics, 36(6), 765–776

    Google Scholar 

  41. Richards, J. G. (1999). The measurement of human motion: A comparison of commercially available systems. Human movement science, 18(5), 589–602

    Google Scholar 

  42. Antwi-Afari, M. F., Li, H., Yu, Y., & Kong, L. (2018). Wearable insole pressure system for automated detection and classification of awkward working postures in construction workers. Automation in Construction, 96(10), 433–441. https://doi.org/10.1016/j.autcon.2018.10.004

    Article  Google Scholar 

  43. Nath, N. D., Akhavian, R., & Behzadan, A. H. (2017). Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. Applied Ergonomics, 62, 107–117. https://doi.org/10.1016/j.apergo.2017.02.007

    Article  Google Scholar 

  44. Valero, E., Sivanathan, A., Bosché, F., & Abdel-Wahab, M. (2017). Analysis of construction trade worker body motions using a wearable and wireless motion sensor network. Automation in Construction, 83(August), 48–55. https://doi.org/10.1016/j.autcon.2017.08.001

    Article  Google Scholar 

  45. Yan, X., Li, H., Li, A. R., & Zhang, H. (2017). Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention. Automation in Construction, 74, 2–11. https://doi.org/10.1016/j.autcon.2016.11.007

    Article  Google Scholar 

  46. Stefana, E., Marciano, F., Rossi, D., Cocca, P., & Tomasoni, G. (2021). Wearable devices for ergonomics: A systematic literature review. Sensors (Switzerland), 21(3), 1–24. https://doi.org/10.3390/s21030777

    Article  Google Scholar 

  47. Antwi-Afari, M. F., Li, H., Umer, W., Yu, Y., & Xing, X. (2020). Construction activity recognition and ergonomic risk assessment using a wearable insole pressure system. Journal of Construction Engineering and Management, 146(7), 04020077. https://doi.org/10.1061/(asce)co.1943-7862.0001849

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikarama Prasad Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patial, R., Gusain, H., Yadav, B.P., Siddiqui, N.A. (2023). A Review of Ergonomic Risk Assessment Techniques Employed in Construction Industry. In: Siddiqui, N.A., Yadav, B.P., Tauseef, S.M., Garg, S.P., Devendra Gill, E.R. (eds) Advances in Construction Safety. Springer, Singapore. https://doi.org/10.1007/978-981-19-4001-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4001-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4000-2

  • Online ISBN: 978-981-19-4001-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics