Skip to main content

Immunology: How Does the Immune System Affect the Development of Pulmonary TB? How Does an Understanding of TB Immunology Help Clinicians Manage their Patients with Pulmonary TB?

  • Chapter
  • First Online:
Pulmonary Tuberculosis and Its Prevention

Abstract

TB is the leading cause of death from a single infectious agent. Mycobacterium tuberculosis—the causative agent of TB—is an intracellular pathogen that is transmitted through the air. When tuberculous bacilli first enter the lung, innate and acquired immune responses are induced. The fact that experimental TB cavities can be formed by the administration of dead Mycobacterium tuberculosis alone indicates how important TB immunity is in the formation of TB lesions. TB bacteria have a variety of defense mechanisms that allow them to survive within macrophages. Thus, low exposure to Mycobacterium tuberculosis is bactericidal, but high exposure can lead to the development of TB and latent infection. The IFN-γ/IL-12 axis—a positive feedback mechanism between macrophages and Th1 cells—is indispensable for the control of TB infection. Recently, TNF-α inhibitors and PD-1 pathway inhibitors have been frequently used in clinical practice. However, recent studies reported that these drugs were associated with the exacerbation of TB infection. Therefore, it is important for clinicians to understand TB immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 March 2023

    Figure 3 of chapter 2 was initially published with errors. This has been corrected.

References

  1. Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130428. https://doi.org/10.1098/rstb.2013.0428.

    Article  Google Scholar 

  2. Yamamura Y. The pathogenesis of tuberculous cavities. Bibl Tuberc. 1958;13:13–37.

    CAS  PubMed  Google Scholar 

  3. San KE, Muhamad M. Pulmonary tuberculosis in HIV infection: the relationship of the radiographic appearance to CD4 T-lymphocytes count. Malays J Med Sci. 2001;8:34–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta N, Kumar R, Agrawal B. New players in immunity to tuberculosis: the host microbiome, lung epithelium, and innate immune cells. Front Immunol. 2018;9:709. https://doi.org/10.3389/fimmu.2018.00709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Rollinghoff M, Bolcskei PL, Wagner M, et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science. 2001;291:1544–7. https://doi.org/10.1126/science.291.5508.1544.

    Article  CAS  PubMed  Google Scholar 

  6. Jo EK, Yang CS, Choi CH, Harding CV. Intracellular signalling cascades regulating innate immune responses to mycobacteria: branching out from toll-like receptors. Cell Microbiol. 2007;9:1087–98. https://doi.org/10.1111/j.1462-5822.2007.00914.x.

    Article  CAS  PubMed  Google Scholar 

  7. Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol. 2012;7:353–84. https://doi.org/10.1146/annurev-pathol-011811-132458.

    Article  CAS  PubMed  Google Scholar 

  8. Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. Innate immune recognition of mycobacterium tuberculosis. Clin Dev Immunol. 2011;2011:405310. https://doi.org/10.1155/2011/405310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150:803–15. https://doi.org/10.1016/j.cell.2012.06.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe. 2012;11:469–80. https://doi.org/10.1016/j.chom.2012.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH, Bishai WR. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med. 2015;21:401–6. https://doi.org/10.1038/nm.3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Collins AC, Cai H, Li T, Franco LH, Li XD, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for mycobacterium tuberculosis. Cell Host Microbe. 2015;17:820–8. https://doi.org/10.1016/j.chom.2015.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS. The cytosolic sensor cGAS detects mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 2015;17:811–9. https://doi.org/10.1016/j.chom.2015.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. Fatal mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest. 2004;114:1790–9. https://doi.org/10.1172/jci21027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scanga CA, Bafica A, Feng CG, Cheever AW, Hieny S, Sher A. MyD88-deficient mice display a profound loss in resistance to mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun. 2004;72:2400–4. https://doi.org/10.1128/iai.72.4.2400-2404.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A, Kugler D, Hieny S, Caspar P, Núñez G, et al. Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol. 2010;184:3326–30. https://doi.org/10.4049/jimmunol.0904189.

    Article  CAS  PubMed  Google Scholar 

  17. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, Jacobs M, Ryffel B, Quesniaux VF. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to mycobacterium tuberculosis infection. J Immunol. 2007;179:1178–89. https://doi.org/10.4049/jimmunol.179.2.1178.

    Article  CAS  PubMed  Google Scholar 

  18. Shi S, Nathan C, Schnappinger D, Drenkow J, Fuortes M, Block E, Ding A, Gingeras TR, Schoolnik G, Akira S, et al. MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to mycobacterium tuberculosis. J Exp Med. 2003;198:987–97. https://doi.org/10.1084/jem.20030603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Velez DR, Wejse C, Stryjewski ME, Abbate E, Hulme WF, Myers JL, Estevan R, Patillo SG, Olesen R, Tacconelli A, et al. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and west Africans. Hum Genet. 2010;127:65–73. https://doi.org/10.1007/s00439-009-0741-7.

    Article  CAS  PubMed  Google Scholar 

  20. Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One. 2007;2:e1318. https://doi.org/10.1371/journal.pone.0001318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davila S, Hibberd ML, Hari Dass R, Wong HE, Sahiratmadja E, Bonnard C, Alisjahbana B, Szeszko JS, Balabanova Y, Drobniewski F, et al. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 2008;4:e1000218. https://doi.org/10.1371/journal.pgen.1000218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, Frodsham AJ, Walley AJ, Kyrieleis O, Khan A, et al. A mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet. 2007;39:523–8. https://doi.org/10.1038/ng1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE 3rd. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature. 2004;431:84–7. https://doi.org/10.1038/nature02837.

    Article  CAS  PubMed  Google Scholar 

  24. Sinsimer D, Huet G, Manca C, Tsenova L, Koo MS, Kurepina N, Kana B, Mathema B, Marras SA, Kreiswirth BN, et al. The phenolic glycolipid of mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun. 2008;76:3027–36. https://doi.org/10.1128/iai.01663-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blanc L, Gilleron M, Prandi J, Song OR, Jang MS, Gicquel B, Drocourt D, Neyrolles O, Brodin P, Tiraby G, et al. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc Natl Acad Sci U S A. 2017;114:11205–10. https://doi.org/10.1073/pnas.1707840114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rengarajan J, Murphy E, Park A, Krone CL, Hett EC, Bloom BR, Glimcher LH, Rubin EJ. Mycobacterium tuberculosis Rv2224c modulates innate immune responses. Proc Natl Acad Sci U S A. 2008;105:264–9. https://doi.org/10.1073/pnas.0710601105.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Madan-Lala R, Peixoto KV, Re F, Rengarajan J. Mycobacterium tuberculosis Hip1 dampens macrophage proinflammatory responses by limiting toll-like receptor 2 activation. Infect Immun. 2011;79:4828–38. https://doi.org/10.1128/iai.05574-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe. 2008;3:224–32. https://doi.org/10.1016/j.chom.2008.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol. 2009;11:1170–8. https://doi.org/10.1111/j.1462-5822.2009.01335.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, et al. Transcriptional adaptation of mycobacterium tuberculosis within macrophages: insights into the Phagosomal environment. J Exp Med. 2003;198:693–704. https://doi.org/10.1084/jem.20030846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A. 2005;102:8327–32. https://doi.org/10.1073/pnas.0503272102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fratti RA, Chua J, Vergne I, Deretic V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A. 2003;100:5437–42. https://doi.org/10.1073/pnas.0737613100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saleh MT, Belisle JT. Secretion of an acid phosphatase (SapM) by mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol. 2000;182:6850–3. https://doi.org/10.1128/jb.182.23.6850-6853.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. Mechanism of phagolysosome biogenesis block by viable mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2005;102:4033–8. https://doi.org/10.1073/pnas.0409716102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, Stokes RW, et al. The mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol. 2004;52:1691–702. https://doi.org/10.1111/j.1365-2958.2004.04085.x.

    Article  CAS  PubMed  Google Scholar 

  36. Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V. The Cell Wall lipid PDIM contributes to Phagosomal escape and host cell exit of mycobacterium tuberculosis. MBio. 2017;8 https://doi.org/10.1128/mBio.00148-17.

  37. Schnettger L, Rodgers A, Repnik U, Lai RP, Pei G, Verdoes M, Wilkinson RJ, Young DB, Gutierrez MG. A Rab20-dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity. Cell Host Microbe. 2017;21:619–628.e615. https://doi.org/10.1016/j.chom.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honoré N, Marchal G, Jiskoot W, England P, et al. ESAT-6 from mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol. 2007;189:6028–34. https://doi.org/10.1128/jb.00469-07.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol. 2012;14:1287–98. https://doi.org/10.1111/j.1462-5822.2012.01799.x.

    Article  CAS  PubMed  Google Scholar 

  40. De Leon J, Jiang G, Ma Y, Rubin E, Fortune S, Sun J. Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic mycobacterium smegmatis. J Biol Chem. 2012;287:44184–91. https://doi.org/10.1074/jbc.M112.420869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK, Cameron J, Hopkinson-Woolley D, Brosch R, Ramakrishnan L. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proc Natl Acad Sci U S A. 2017;114:1371–6. https://doi.org/10.1073/pnas.1620133114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science. 2000;288:1647–50. https://doi.org/10.1126/science.288.5471.1647.

    Article  CAS  PubMed  Google Scholar 

  43. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell. 2007;130:37–50. https://doi.org/10.1016/j.cell.2007.04.043.

    Article  CAS  PubMed  Google Scholar 

  44. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999;285:732–6. https://doi.org/10.1126/science.285.5428.732.

    Article  CAS  PubMed  Google Scholar 

  45. Long R, Light B, Talbot JA. Mycobacteriocidal action of exogenous nitric oxide. Antimicrob Agents Chemother. 1999;43:403–5. https://doi.org/10.1128/aac.43.2.403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu K, Mitchell C, Xing Y, Magliozzo RS, Bloom BR, Chan J. Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuber Lung Dis. 1999;79:191–8. https://doi.org/10.1054/tuld.1998.0203.

    Article  CAS  PubMed  Google Scholar 

  47. O'Brien L, Carmichael J, Lowrie DB, Andrew PW. Strains of mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect Immun. 1994;62:5187–90. https://doi.org/10.1128/iai.62.11.5187-5190.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flesch IE, Kaufmann SH. Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect Immun. 1991;59:3213–8. https://doi.org/10.1128/iai.59.9.3213-3218.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992;175:1111–22. https://doi.org/10.1084/jem.175.4.1111.

    Article  CAS  PubMed  Google Scholar 

  50. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94:5243–8. https://doi.org/10.1073/pnas.94.10.5243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flynn JL, Scanga CA, Tanaka KE, Chan J. Effects of aminoguanidine on latent murine tuberculosis. J Immunol. 1998;160:1796–803.

    Article  CAS  PubMed  Google Scholar 

  52. Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of mycobacterium tuberculosis in mice. Infect Immun. 2001;69:7711–7. https://doi.org/10.1128/iai.69.12.7711-7717.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Kelley C, Collins F, Rouse D, Morris S. Expression of katG in mycobacterium tuberculosis is associated with its growth and persistence in mice and Guinea pigs. J Infect Dis. 1998;177:1030–5. https://doi.org/10.1086/515254.

    Article  CAS  PubMed  Google Scholar 

  54. Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. The proteasome of mycobacterium tuberculosis is required for resistance to nitric oxide. Science. 2003;302:1963–6. https://doi.org/10.1126/science.1091176.

    Article  CAS  PubMed  Google Scholar 

  55. Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A. 1999;96:14459–63. https://doi.org/10.1073/pnas.96.25.14459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3. https://doi.org/10.1126/science.1123933.

    Article  CAS  PubMed  Google Scholar 

  57. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179:2060–3. https://doi.org/10.4049/jimmunol.179.4.2060.

    Article  CAS  PubMed  Google Scholar 

  58. Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6:231–43. https://doi.org/10.1016/j.chom.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  59. Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S, Lee HM, Krutzik SR, Schenk M, Sieling PA, et al. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med. 2011;3:104ra102. https://doi.org/10.1126/scitranslmed.3003045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119:753–66. https://doi.org/10.1016/j.cell.2004.11.038.

    Article  CAS  PubMed  Google Scholar 

  61. MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science. 2003;302:654–9. https://doi.org/10.1126/science.1088063.

    Article  CAS  PubMed  Google Scholar 

  62. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 2006;313:1438–41. https://doi.org/10.1126/science.1129577.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV. Genome-wide analysis of the host intracellular network that regulates survival of mycobacterium tuberculosis. Cell. 2010;140:731–43. https://doi.org/10.1016/j.cell.2010.02.012.

    Article  CAS  PubMed  Google Scholar 

  64. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 2013;501:512–6. https://doi.org/10.1038/nature12566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sakowski ET, Koster S, Portal Celhay C, Park HS, Shrestha E, Hetzenecker SE, Maurer K, Cadwell K, Philips JA. Ubiquilin 1 promotes IFN-γ-induced Xenophagy of mycobacterium tuberculosis. PLoS Pathog. 2015;11:e1005076. https://doi.org/10.1371/journal.ppat.1005076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeken S, Karunakaran D, Portal-Celhay C, Sheedy FJ, Ray TD, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol. 2016;17:677–86. https://doi.org/10.1038/ni.3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC, Kunnath-Velayudhan S, Carreño LJ, Xu J, Chan J, Larsen MH, et al. Suppression of autophagy and antigen presentation by mycobacterium tuberculosis PE_PGRS47. Nat Microbiol. 2016;1:16133. https://doi.org/10.1038/nmicrobiol.2016.133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tian T, Woodworth J, Sköld M, Behar SM. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to mycobacterium tuberculosis and exacerbates the outcome of infection. J Immunol. 2005;175:3268–72. https://doi.org/10.4049/jimmunol.175.5.3268.

    Article  CAS  PubMed  Google Scholar 

  69. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, Ernst JD. Initiation of the adaptive immune response to mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008;205:105–15. https://doi.org/10.1084/jem.20071367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olmos S, Stukes S, Ernst JD. Ectopic activation of mycobacterium tuberculosis-specific CD4+ T cells in lungs of CCR7−/− mice. J Immunol. 2010;184:895–901. https://doi.org/10.4049/jimmunol.0901230.

    Article  CAS  PubMed  Google Scholar 

  71. Bhatt K, Hickman SP, Salgame P. Cutting edge: a new approach to modeling early lung immunity in murine tuberculosis. J Immunol. 2004;172:2748–51. https://doi.org/10.4049/jimmunol.172.5.2748.

    Article  CAS  PubMed  Google Scholar 

  72. Khader SA, Partida-Sanchez S, Bell G, Jelley-Gibbs DM, Swain S, Pearl JE, Ghilardi N, Desauvage FJ, Lund FE, Cooper AM. Interleukin 12p40 is required for dendritic cell migration and T cell priming after mycobacterium tuberculosis infection. J Exp Med. 2006;203:1805–15. https://doi.org/10.1084/jem.20052545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wolf AJ, Linas B, Trevejo-Nuñez GJ, Kincaid E, Tamura T, Takatsu K, Ernst JD. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol. 2007;179:2509–19. https://doi.org/10.4049/jimmunol.179.4.2509.

    Article  CAS  PubMed  Google Scholar 

  74. Ottenhoff TH, Kumararatne D, Casanova JL. Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol Today. 1998;19:491–4. https://doi.org/10.1016/s0167-5699(98)01321-8.

    Article  CAS  PubMed  Google Scholar 

  75. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, Levin M, Blanche S, Seboun E, Fischer A, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med. 1996;335:1956–61. https://doi.org/10.1056/nejm199612263352604.

    Article  CAS  PubMed  Google Scholar 

  76. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, Levin M. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 1996;335:1941–9. https://doi.org/10.1056/nejm199612263352602.

    Article  CAS  PubMed  Google Scholar 

  77. Dorman SE, Holland SM. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest. 1998;101:2364–9. https://doi.org/10.1172/jci2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondanèche MC, Dupuis S, Döffinger R, Altare F, Girdlestone J, Emile JF, et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet. 1999;21:370–8. https://doi.org/10.1038/7701.

    Article  CAS  PubMed  Google Scholar 

  79. Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, Holland SM, Schreiber RD, Casanova JL. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293:300–3. https://doi.org/10.1126/science.1061154.

    Article  CAS  PubMed  Google Scholar 

  80. Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku CL, Puel A, Frucht DM, Christel K, von Bernuth H, Jouanguy E, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203:1745–59. https://doi.org/10.1084/jem.20060085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, Drysdale P, Jouanguy E, Döffinger R, Bernaudin F, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science. 1998;280:1432–5. https://doi.org/10.1126/science.280.5368.1432.

    Article  CAS  PubMed  Google Scholar 

  82. Altare F, Lammas D, Revy P, Jouanguy E, Döffinger R, Lamhamedi S, Drysdale P, Scheel-Toellner D, Girdlestone J, Darbyshire P, et al. Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and salmonella enteritidis disseminated infection. J Clin Invest. 1998;102:2035–40. https://doi.org/10.1172/jci4950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Elloumi-Zghal H, Barbouche MR, Chemli J, Béjaoui M, Harbi A, Snoussi N, Abdelhak S, Dellagi K. Clinical and genetic heterogeneity of inherited autosomal recessive susceptibility to disseminated Mycobacterium bovis bacille calmette-guérin infection. J Infect Dis. 2002;185:1468–75. https://doi.org/10.1086/340510.

    Article  CAS  PubMed  Google Scholar 

  84. Picard C, Fieschi C, Altare F, Al-Jumaah S, Al-Hajjar S, Feinberg J, Dupuis S, Soudais C, Al-Mohsen IZ, Génin E, et al. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet. 2002;70:336–48. https://doi.org/10.1086/338625.

    Article  CAS  PubMed  Google Scholar 

  85. de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, et al. Severe mycobacterial and salmonella infections in interleukin-12 receptor-deficient patients. Science. 1998;280:1435–8. https://doi.org/10.1126/science.280.5368.1435.

    Article  PubMed  Google Scholar 

  86. Altare F, Ensser A, Breiman A, Reichenbach J, Baghdadi JE, Fischer A, Emile JF, Gaillard JL, Meinl E, Casanova JL. Interleukin-12 receptor beta1 deficiency in a patient with abdominal tuberculosis. J Infect Dis. 2001;184:231–6. https://doi.org/10.1086/321999.

    Article  CAS  PubMed  Google Scholar 

  87. Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN, Hernández M, Figueras C, Bertrán JM, Casanova JL, Español T. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis. 2003;37:302–6. https://doi.org/10.1086/375587.

    Article  CAS  PubMed  Google Scholar 

  88. Fieschi C, Bosticardo M, de Beaucoudrey L, Boisson-Dupuis S, Feinberg J, Santos OF, Bustamante J, Levy J, Candotti F, Casanova JL. A novel form of complete IL-12/IL-23 receptor beta1 deficiency with cell surface-expressed nonfunctional receptors. Blood. 2004;104:2095–101. https://doi.org/10.1182/blood-2004-02-0584.

    Article  CAS  PubMed  Google Scholar 

  89. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to mycobacterium tuberculosis infection. J Exp Med. 1993;178:2249–54. https://doi.org/10.1084/jem.178.6.2249.

    Article  CAS  PubMed  Google Scholar 

  90. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178:2243–7. https://doi.org/10.1084/jem.178.6.2243.

    Article  CAS  PubMed  Google Scholar 

  91. Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med. 1997;186:39–45. https://doi.org/10.1084/jem.186.1.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Feng CG, Jankovic D, Kullberg M, Cheever A, Scanga CA, Hieny S, Caspar P, Yap GS, Sher A. Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J Immunol. 2005;174:4185–92. https://doi.org/10.4049/jimmunol.174.7.4185.

    Article  CAS  PubMed  Google Scholar 

  93. Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-gamma): exploring its implications in infectious diseases. Biomol Concepts. 2018;9:64–79. https://doi.org/10.1515/bmc-2018-0007.

    Article  CAS  PubMed  Google Scholar 

  94. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69. https://doi.org/10.1016/s0092-8674(00)80702-3.

    Article  CAS  PubMed  Google Scholar 

  95. Matsuyama M, Ishii Y, Yageta Y, Ohtsuka S, Ano S, Matsuno Y, Morishima Y, Yoh K, Takahashi S, Ogawa K, et al. Role of Th1/Th17 balance regulated by T-bet in a mouse model of Mycobacterium avium complex disease. J Immunol. 2014;192:1707–17. https://doi.org/10.4049/jimmunol.1302258.

    Article  CAS  PubMed  Google Scholar 

  96. Sullivan BM, Jobe O, Lazarevic V, Vasquez K, Bronson R, Glimcher LH, Kramnik I. Increased susceptibility of mice lacking T-bet to infection with mycobacterium tuberculosis correlates with increased IL-10 and decreased IFN-gamma production. J Immunol. 2005;175:4593–602. https://doi.org/10.4049/jimmunol.175.7.4593.

    Article  CAS  PubMed  Google Scholar 

  97. Redford PS, Boonstra A, Read S, Pitt J, Graham C, Stavropoulos E, Bancroft GJ, O'Garra A. Enhanced protection to mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur J Immunol. 2010;40:2200–10. https://doi.org/10.1002/eji.201040433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne mycobacterium tuberculosis infection in mice. J Exp Med. 2001;193:271–80. https://doi.org/10.1084/jem.193.3.271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with mycobacterium tuberculosis. J Exp Med. 1999;189:1973–80. https://doi.org/10.1084/jem.189.12.1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A. 2000;97:4204–8. https://doi.org/10.1073/pnas.97.8.4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, Shen Y, Halliday L, Fortman J, McAllister M, et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog. 2009;5:e1000392. https://doi.org/10.1371/journal.ppat.1000392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P. Control of latent mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol. 2000;30:3689–98. https://doi.org/10.1002/1521-4141(200012)30:12<3689::Aid-immu3689>3.0.Co;2-4.

    Article  PubMed  Google Scholar 

  103. Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 1997;276:1684–7. https://doi.org/10.1126/science.276.5319.1684.

    Article  CAS  PubMed  Google Scholar 

  104. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998;282:121–5. https://doi.org/10.1126/science.282.5386.121.

    Article  CAS  PubMed  Google Scholar 

  105. Ernst WA, Thoma-Uszynski S, Teitelbaum R, Ko C, Hanson DA, Clayberger C, Krensky AM, Leippe M, Bloom BR, Ganz T, et al. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J Immunol. 2000;165:7102–8. https://doi.org/10.4049/jimmunol.165.12.7102.

    Article  CAS  PubMed  Google Scholar 

  106. Bruns H, Meinken C, Schauenberg P, Härter G, Kern P, Modlin RL, Antoni C, Stenger S. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against mycobacterium tuberculosis in humans. J Clin Invest. 2009;119:1167–77. https://doi.org/10.1172/jci38482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shams H, Klucar P, Weis SE, Lalvani A, Moonan PK, Safi H, Wizel B, Ewer K, Nepom GT, Lewinsohn DM, et al. Characterization of a mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles. J Immunol. 2004;173:1966–77. https://doi.org/10.4049/jimmunol.173.3.1966.

    Article  CAS  PubMed  Google Scholar 

  108. Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P, Dockrell H, Pasvol G, Hill AV. Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1998;95:270–5. https://doi.org/10.1073/pnas.95.1.270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pathan AA, Wilkinson KA, Wilkinson RJ, Latif M, McShane H, Pasvol G, Hill AV, Lalvani A. High frequencies of circulating IFN-gamma-secreting CD8 cytotoxic T cells specific for a novel MHC class I-restricted mycobacterium tuberculosis epitope in M. tuberculosis-infected subjects without disease. Eur J Immunol. 2000;30:2713–21. https://doi.org/10.1002/1521-4141(200009)30:9<2713::Aid-immu2713>3.0.Co;2-4.

    Article  CAS  PubMed  Google Scholar 

  110. Klein MR, Smith SM, Hammond AS, Ogg GS, King AS, Vekemans J, Jaye A, Lukey PT, McAdam KP. HLA-B*35-restricted CD8 T cell epitopes in the antigen 85 complex of mycobacterium tuberculosis. J Infect Dis. 2001;183:928–34. https://doi.org/10.1086/319267.

    Article  CAS  PubMed  Google Scholar 

  111. Caccamo N, Meraviglia S, La Mendola C, Guggino G, Dieli F, Salerno A. Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens. J Immunol. 2006;177:1780–5. https://doi.org/10.4049/jimmunol.177.3.1780.

    Article  CAS  PubMed  Google Scholar 

  112. Lewinsohn DA, Winata E, Swarbrick GM, Tanner KE, Cook MS, Null MD, Cansler ME, Sette A, Sidney J, Lewinsohn DM. Immunodominant tuberculosis CD8 antigens preferentially restricted by HLA-B. PLoS Pathog. 2007;3:1240–9. https://doi.org/10.1371/journal.ppat.0030127.

    Article  CAS  PubMed  Google Scholar 

  113. Lewinsohn DM, Swarbrick GM, Cansler ME, Null MD, Rajaraman V, Frieder MM, Sherman DR, McWeeney S, Lewinsohn DA. Human mycobacterium tuberculosis CD8 T cell antigens/epitopes identified by a proteomic peptide library. PLoS One. 2013;8:e67016. https://doi.org/10.1371/journal.pone.0067016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, Torres M. Diagnosis for latent tuberculosis infection: new alternatives. Front Immunol. 2006;2020:11. https://doi.org/10.3389/fimmu.2020.02006.

    Article  CAS  Google Scholar 

  115. Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, Schurr E, Wallis RS, Churchyard G, Mayanja-Kizza H, et al. Immunological mechanisms of human resistance to persistent mycobacterium tuberculosis infection. Nat Rev Immunol. 2018;18:575–89. https://doi.org/10.1038/s41577-018-0025-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018;362:k2738. https://doi.org/10.1136/bmj.k2738.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bloch H, Segal W. Biochemical differentiation of mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol. 1956;72:132–41. https://doi.org/10.1128/jb.72.2.132-141.1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bishai W. Lipid lunch for persistent pathogen. Nature. 2000;406:683–5. https://doi.org/10.1038/35021159.

    Article  CAS  PubMed  Google Scholar 

  119. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd. The transcriptional responses of mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem. 2004;279:40174–84. https://doi.org/10.1074/jbc.M406796200.

    Article  CAS  PubMed  Google Scholar 

  120. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: controlling tuberculosis in the United States. Am J Respir Crit Care Med. 2005;172:1169–227. https://doi.org/10.1164/rccm.2508001.

    Article  Google Scholar 

  121. Herrera V, Perry S, Parsonnet J, Banaei N. Clinical application and limitations of interferon-gamma release assays for the diagnosis of latent tuberculosis infection. Clin Infect Dis. 2011;52:1031–7. https://doi.org/10.1093/cid/cir068.

    Article  CAS  PubMed  Google Scholar 

  122. Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, Vermund SH, Klein RS, Walker AT, Friedland GH. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med. 1989;320:545–50. https://doi.org/10.1056/nejm198903023200901.

    Article  CAS  PubMed  Google Scholar 

  123. Selwyn PA, Sckell BM, Alcabes P, Friedland GH, Klein RS, Schoenbaum EE. High risk of active tuberculosis in HIV-infected drug users with cutaneous anergy. JAMA. 1992;268:504–9.

    Article  CAS  PubMed  Google Scholar 

  124. Markowitz N, Hansen NI, Hopewell PC, Glassroth J, Kvale PA, Mangura BT, Wilcosky TC, Wallace JM, Rosen MJ, Reichman LB. Incidence of tuberculosis in the United States among HIV-infected persons. The pulmonary complications of HIV infection study group. Ann Intern Med. 1997;126:123–32. https://doi.org/10.7326/0003-4819-126-2-199701150-00005.

    Article  CAS  PubMed  Google Scholar 

  125. Ehlers S. Role of tumour necrosis factor (TNF) in host defence against tuberculosis: implications for immunotherapies targeting TNF. Ann Rheum Dis. 2003;62 Suppl 2:ii37-42. https://doi.org/10.1136/ard.62.suppl_2.ii37.

    Article  PubMed  Google Scholar 

  126. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62. https://doi.org/10.1038/nrrheum.2015.169.

    Article  CAS  PubMed  Google Scholar 

  127. Lin PL, Plessner HL, Voitenok NN, Flynn JL. Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc. 2007;12:22–5. https://doi.org/10.1038/sj.jidsymp.5650027.

    Article  CAS  PubMed  Google Scholar 

  128. Johnson CM, Cooper AM, Frank AA, Orme IM. Adequate expression of protective immunity in the absence of granuloma formation in mycobacterium tuberculosis-infected mice with a disruption in the intracellular adhesion molecule 1 gene. Infect Immun. 1998;66:1666–70. https://doi.org/10.1128/iai.66.4.1666-1670.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schreiber T, Ehlers S, Aly S, Hölscher A, Hartmann S, Lipp M, Lowe JB, Hölscher C. Selectin ligand-independent priming and maintenance of T cell immunity during airborne tuberculosis. J Immunol. 2006;176:1131–40. https://doi.org/10.4049/jimmunol.176.2.1131.

    Article  CAS  PubMed  Google Scholar 

  130. Harris J, Keane J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin Exp Immunol. 2010;161:1–9. https://doi.org/10.1111/j.1365-2249.2010.04146.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Harris J, Hope JC, Keane J. Tumor necrosis factor blockers influence macrophage responses to mycobacterium tuberculosis. J Infect Dis. 2008;198:1842–50. https://doi.org/10.1086/593174.

    Article  CAS  PubMed  Google Scholar 

  132. Harris J, Hope JC, Lavelle EC. Autophagy and the immune response to TB. Transbound Emerg Dis. 2009;56:248–54. https://doi.org/10.1111/j.1865-1682.2009.01069.x.

    Article  CAS  PubMed  Google Scholar 

  133. Di Sabatino A, Ciccocioppo R, Cinque B, Millimaggi D, Morera R, Ricevuti L, Cifone MG, Corazza GR. Defective mucosal T cell death is sustainably reverted by infliximab in a caspase dependent pathway in Crohn's disease. Gut. 2004;53:70–7. https://doi.org/10.1136/gut.53.1.70.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mitoma H, Horiuchi T, Hatta N, Tsukamoto H, Harashima S, Kikuchi Y, Otsuka J, Okamura S, Fujita S, Harada M. Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology. 2005;128:376–92. https://doi.org/10.1053/j.gastro.2004.11.060.

    Article  CAS  PubMed  Google Scholar 

  135. Shen C, Assche GV, Colpaert S, Maerten P, Geboes K, Rutgeerts P, Ceuppens JL. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther. 2005;21:251–8. https://doi.org/10.1111/j.1365-2036.2005.02309.x.

    Article  CAS  PubMed  Google Scholar 

  136. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001;345:1098–104. https://doi.org/10.1056/NEJMoa011110.

    Article  CAS  PubMed  Google Scholar 

  137. Gómez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum. 2003;48:2122–7. https://doi.org/10.1002/art.11137.

    Article  CAS  PubMed  Google Scholar 

  138. Brassard P, Kezouh A, Suissa S. Antirheumatic drugs and the risk of tuberculosis. Clin Infect Dis. 2006;43:717–22. https://doi.org/10.1086/506935.

    Article  CAS  PubMed  Google Scholar 

  139. Hsia EC, Schluger N, Cush JJ, Chaisson RE, Matteson EL, Xu S, Beutler A, Doyle MK, Hsu B, Rahman MU. Interferon-γ release assay versus tuberculin skin test prior to treatment with golimumab, a human anti-tumor necrosis factor antibody, in patients with rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis. Arthritis Rheum. 2012;64:2068–77. https://doi.org/10.1002/art.34382.

    Article  CAS  PubMed  Google Scholar 

  140. Bykerk VP, Cush J, Winthrop K, Calabrese L, Lortholary O, de Longueville M, van Vollenhoven R, Mariette X. Update on the safety profile of certolizumab pegol in rheumatoid arthritis: an integrated analysis from clinical trials. Ann Rheum Dis. 2015;74:96–103. https://doi.org/10.1136/annrheumdis-2013-203660.

    Article  CAS  PubMed  Google Scholar 

  141. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24. https://doi.org/10.1093/intimm/dxm057.

    Article  CAS  PubMed  Google Scholar 

  143. Shimatani K, Nakashima Y, Hattori M, Hamazaki Y, Minato N. PD-1+ memory phenotype CD4+ T cells expressing C/EBPalpha underlie T cell immunodepression in senescence and leukemia. Proc Natl Acad Sci U S A. 2009;106:15807–12. https://doi.org/10.1073/pnas.0908805106.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  PubMed  Google Scholar 

  145. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol. 2002;169:5538–45. https://doi.org/10.4049/jimmunol.169.10.5538.

    Article  CAS  PubMed  Google Scholar 

  146. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006;27:195–201. https://doi.org/10.1016/j.it.2006.02.001.

    Article  CAS  PubMed  Google Scholar 

  147. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7. https://doi.org/10.1038/nature04444.

    Article  CAS  PubMed  Google Scholar 

  148. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–4. https://doi.org/10.1038/nature05115.

    Article  CAS  PubMed  Google Scholar 

  149. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, Laccabue D, Zerbini A, Cavalli A, Missale G, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81:4215–25. https://doi.org/10.1128/jvi.02844-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fujita K, Terashima T, Mio T. Anti-PD1 antibody treatment and the development of acute pulmonary tuberculosis. J Thorac Oncol. 2016;11:2238–40. https://doi.org/10.1016/j.jtho.2016.07.006.

    Article  PubMed  Google Scholar 

  151. Elkington PT, Bateman AC, Thomas GJ, Ottensmeier CH. Implications of tuberculosis reactivation after immune checkpoint inhibition. Am J Respir Crit Care Med. 2018;198:1451–3. https://doi.org/10.1164/rccm.201807-1250LE.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA, Vergara JA, Ashkin D, Cheng JH, Lundgren LM, Raabe VN, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med. 2019;11:doi:10.1126/scitranslmed.aat2702.

    Article  Google Scholar 

  153. Shi J, Li J, Wang Q, Cheng X, Du H, Han R, Li X, Zhao C, Gao G, He Y, et al. The safety and efficacy of immunotherapy with anti-programmed cell death 1 monoclonal antibody for lung cancer complicated with mycobacterium tuberculosis infection. Transl Lung Cancer Res. 2021;10:3929–42. https://doi.org/10.21037/tlcr-21-524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, Barber DL. CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog. 2016;12:e1005667. https://doi.org/10.1371/journal.ppat.1005667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lázár-Molnár E, Chen B, Sweeney KA, Wang EJ, Liu W, Lin J, Porcelli SA, Almo SC, Nathenson SG, Jacobs WR Jr. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A. 2010;107:13402–7. https://doi.org/10.1073/pnas.1007394107.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lee J, Kornfeld H. Interferon-γ regulates the death of M. tuberculosis-infected macrophages. J Cell Death. 2010;3:1–11. https://doi.org/10.4137/jcd.s2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tezera LB, Bielecka MK, Ogongo P, Walker NF, Ellis M, Garay-Baquero DJ, Thomas K, Reichmann MT, Johnston DA, Wilkinson KA, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9 https://doi.org/10.7554/eLife.52668.

  158. Kauffman KD, Sakai S, Lora NE, Namasivayam S, Baker PJ, Kamenyeva O, Foreman TW, Nelson CE, Oliveira-de-Souza D, Vinhaes CL, et al. PD-1 blockade exacerbates mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol. 2021;6 https://doi.org/10.1126/sciimmunol.abf3861.

Download references

Acknowledgments

We thank J. Ludovic Croxford, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuyama, M., Ishii, Y. (2022). Immunology: How Does the Immune System Affect the Development of Pulmonary TB? How Does an Understanding of TB Immunology Help Clinicians Manage their Patients with Pulmonary TB?. In: Saito, T., Narita, M., Daley, C.L. (eds) Pulmonary Tuberculosis and Its Prevention. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-19-3995-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3995-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3994-5

  • Online ISBN: 978-981-19-3995-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics