Skip to main content

Software Tools for Satellite Laser Altimetry Data Processing, Analysis, and Visualization: An Overview and Assessment

  • Conference paper
  • First Online:
Proceedings of International Conference on Communication and Computational Technologies

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 290 Accesses

Abstract

Although there are some applications and application programming interfaces (APIs) to handle satellite laser altimetry data, there is a lack of tools that allow to access, visualize, and explore adequately the very large amount of raw data collected by NASA’s ICESat and ICESat-2 satellite missions on the basis of the data gathering location. In addition, processing and analyzing satellite altimetry data generally demands the use of additional software, that generally does not automatically talk to each other, and requires additional steps such as data filtering, exporting, and conversion. In view of this, this paper presents an overview of the existing software tools for the processing, analysis, and visualization of satellite laser altimetry data, and a comparative discussion of their features and characteristics. Emphasis is placed on the two main computer tools available, namely the OpenAltimetry online tool and ICEComb, a more recent and comprehensive software tool developed by the authors specifically for further processing and examination of satellite laser altimetry data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schutz BE, Zwally HJ, Shuman CA, Hancock D, DiMarzio JP (2005) Overview of the ICESat mission. Geophys Res Lett 32:L21S01. https://doi.org/10.1029/2005GL024009

    Article  Google Scholar 

  2. Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34:405–445. https://doi.org/10.1016/S0264-3707(02)00042-X

    Article  Google Scholar 

  3. Baghdadi N, Lemarquand N, Abdallah H, Bailly JS (2011) The relevance of GLAS/ICESat elevation data for the monitoring of river networks. Remote Sens 3:708–720. https://doi.org/10.3390/rs3040708

    Article  Google Scholar 

  4. Gong P, Li Z, Huang H, Sun G, Wang L (2011) ICESat GLAS data for urban environment monitoring. IEEE Trans Geosci Remote Sens 49:1158–1172. https://doi.org/10.1109/TGRS.2010.2070514

    Article  Google Scholar 

  5. Wang X, Cheng X, Gong P, Huang H, Li Z, Li X (2011) Earth science applications of ICESat/GLAS: a review. Int J Remote Sens 32:8837–8864. https://doi.org/10.1080/01431161.2010.547533

    Article  Google Scholar 

  6. Ye Z, Liu H, Chen Y, Shu S, Wu Q, Wang S (2017) Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009). PLoS ONE 12:e0183800. https://doi.org/10.1371/journal.pone.0183800

    Article  Google Scholar 

  7. Abshire JB, Sun X, Riris H, Sirota M, McGarry J, Palm S, Ketchum EA, Follas RB (2003) Geoscience Laser Altimeter System (GLAS) on the ICESat mission: Pre-launch and on-orbit measurement performance: In: IGARSS 2003—2003 IEEE international geoscience and remote sensing symposium proceedings (IEEE Cat. No. 03CH37477), vol 3. IEEE, Piscataway, NJ, pp 1534–1536. https://doi.org/10.1109/IGARSS.2003.1294166

    Google Scholar 

  8. Abshire JB, Sun X, Riris H, Sirota JM, McGarry JF, Palm S, Yi D, Liiva P (2005) Geoscience Laser Altimeter System (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32:L21S02. https://doi.org/10.1029/2005GL024028

    Article  Google Scholar 

  9. Schutz BE, Bae S, Smith N, Sirota M (2008) Precision orbit and attitude determination for ICESat. In: Crassidis JJ, Junkins JL, Howell KC, Oshman Y, Thienel JK (eds) The F Landis Markley astronautics symposium, Advances in the astronautical sciences, vol 132. American Astronautical Society, San Diego, CA, pp 775–791

    Google Scholar 

  10. Smith N, Fowell R, Bae S, Schutz B (2011) Improved star tracker instrument magnitude prediction from ICESat flight telemetry. In: Miller KB (ed) Guidance and control 2011, Advances in the astronautical sciences, vol 141. American Astronautical Society, San Diego, CA, pp 639–654

    Google Scholar 

  11. Abdalati W, Zwally H, Bindschadler R, Csatho B, Farrell S, Fricker H, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98:735–751. https://doi.org/10.1109/JPROC.2009.2034765

    Article  Google Scholar 

  12. Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum CK, Schutz BE, Smith B, Yang Y, Zwally J (2017) The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens Environ 190:260–273. https://doi.org/10.1016/j.rse.2016.12.029

    Article  Google Scholar 

  13. Jasinski MF, Stoll JD, Cook WB, Ondrusek M, Stengel E, Brunt K (2016) Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL). J Coast Res 76:44–55. https://doi.org/10.2112/SI76-005

    Article  Google Scholar 

  14. Hussmann H (2015) Laser altimetry and its applications in planetary science. In: Jin S (ed) Planetary Geodesy Remote Sensing. CRC Press, Boca Raton, FL, pp 51–75

    Google Scholar 

  15. Chelton DB, Ries JC, Haines BJ, Fu L-L, Callahan PS (2001) Satellite altimetry. In: Fu L-L, Cazenave A (eds) Satellite altimetry and earth sciences: a handbook of techniques and applications. Academic Press, San Diego, CA, pp 1–131

    Google Scholar 

  16. Escudier P, Couhert A, Mercier F, Mallet A, Thibaut P, Tran N, Amarouche L, Picard B, Carrere L, Dibarboure G, Ablain M, Richard J, Steunou N, Dubois P, Rio M-H, Dorandeu J (2018) Satellite radar altimetry: principle, accuracy, and precision. In: Stammer D, Cazenave A (eds) Satellite Altimetry Over Oceans and Land Surfaces CRC Press, Boca Raton, FL, pp 1–69

    Google Scholar 

  17. Brenner AC, DiMarzio JP, Zwally HJ (2007) Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans Geosci Remote Sens 45:321–331. https://doi.org/10.1109/TGRS.2006.887172

  18. Dong P, Chen Q (2018) Principles of LiDAR remote sensing. In: LiDAR remote sensing and applications. CRC Press, Boca Raton, FL, pp 19–39

    Google Scholar 

  19. Singh UN, Ismail S, Kavaya MJ, Winker DM, Amzajerdian F (2005) Space-based lidar. In: Fujii T, Fukuchi T (eds) Laser Remote Sensing CRC Press, Boca Raton, FL, pp 781–881

    Google Scholar 

  20. Biancamaria S, Frappart F, Leleu AS, Marieu V, Blumstein D, Desjonquères J-D, Boy F, Sottolichio A, Valle-Levinson A (2017) Satellite radar altimetry water elevations performance over a 200m wide river: evaluation over the Garonne River. Adv Space Res 59:128–146. https://doi.org/10.1016/j.asr.2016.10.008

    Article  Google Scholar 

  21. Sun X, Abshire JB, Borsa AA, Fricker HA, Yi D, DiMarzio JP, Paolo FS, Brunt KM, Harding DJ, Neumann GA (2017) ICESat/GLAS altimetry measurements: received signal dynamic range and saturation correction. IEEE Trans Geosci Remote Sens 55:5440–5454. https://doi.org/10.1109/TGRS.2017.2702126

    Article  Google Scholar 

  22. Tang X, Yao J, Li G, Ai B, Wang Z, Gao X (2020) Cloud scattering influence on satellite laser altimetry data and its correction. Appl Opt 59:4064–4075. https://doi.org/10.1364/AO.385808

    Article  Google Scholar 

  23. HDF5. https://portal.hdfgroup.org/display/HDF5/HDF5

  24. HDFql—The easy way to manage HDF5 data. https://www.hdfql.com

  25. HDF® View. https://www.hdfgroup.org/downloads/hdfview/

  26. Panoply netCDF, HDF and GRIB data viewer. https://www.giss.nasa.gov/tools/panoply/

  27. HDF Explorer. https://www.space-research.org

  28. Overview \(\vert \) ViTables. https://vitables.org

  29. Scharfen GR, Hall DK, Riggs GA (1997) MODIS snow and ice products from the NSIDC DAAC. In: Barnes WL (ed) Earth observing systems II, SPIE Proceedings, vol 3117. SPIE, Bellingham, WA, pp 143–147. https://doi.org/10.1117/12.283803

  30. NASA Distributed Active Archive Center (DAAC) at NSIDC. https://nsidc.org/daac/

  31. Gallaher D, Weaver RLS, Stroeve J, Swick R (2008) Data access tools—filling the usability gap in cryosphere data. In: IGARSS 2008, 2008 IEEE international geoscience and remote sensing symposium, vol 4. IEEE, Piscataway, NJ, pp iv-287–iv-290. https://doi.org/10.1109/IGARSS.2008.4779714

  32. NASA Earthdata Search. https://search.earthdata.nasa.gov

  33. NASA EOSDIS Worldview. https://worldview.earthdata.nasa.gov

  34. Murphy KJ, Davies DK, Michael K, Justice CO, Schmaltz JE, Boller R, McLemore BD, Ding F, Vollmer B, Wong MM (2015) LANCE, NASA’s land, atmosphere near real-time capability for EOS. In: Lippitt CD, Stow DA, Coulter LL (eds) Time-sensitive remote sensing. Springer, New York, pp 113–127. https://doi.org/10.1007/978-1-4939-2602-2_8

  35. Davies DK, Murphy KJ, Michael K, Becker-Reshef I, Justice CO, Boller R, Braun SA, Schmaltz JE, Wong MM, Pasch AN, Dye TS, da Silva AM, Goodman HM, Morin PJ (2015) The use of NASA LANCE imagery and data for near real-time applications. In: Lippitt CD, Stow DA, Coulter LL (eds) Time-sensitive remote sensing. Springer, New York. https://doi.org/10.1007/978-1-4939-2602-2_11

  36. Passaia OA, Paiva RCD (2017) Processamento de dados do ICESat para aplicações hidrológicas [ICESat data processing for hydrological applications]. Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto. XVIII SBSR. INPE, São José dos Campos, SP, Brazil, pp 934–940

    Google Scholar 

  37. OpenAltimetry. http://www.openaltimetry.org

  38. Khalsa SJS, Borsa A, Nandigam V, Phan M, Lin K, Crosby C, Fricker H, Baru C, Lopez L (2020) OpenAltimetry—rapid analysis and visualization of spaceborne altimeter data. Earth Sci Inform. https://doi.org/10.1007/s12145-020-00520-2

    Article  Google Scholar 

  39. Nandigam V, Lin K, Phan, M., Borsa A, Khalsa SJS, Crosby C (2018) Rapid access and visualization of spaceborne altimetry data from ICESat and ICESat-2. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium proceedings. IEEE, Piscataway, NJ, pp 5270–5273. https://doi.org/10.1109/IGARSS.2018.8518105

  40. ICEComb Tool—ICESat/ICESat-2 data processor, analyser and visualiser. https://www.icecomb.org

  41. Silva B, Lopes LG, Campos P (2021) ICEComb—a new software tool for satellite laser altimetry data processing and visualisation. In: EGU general assembly 2021 conference abstracts. EGU, Munich, Germany, pp 13727–13728. https://doi.org/10.5194/egusphere-egu21-13727

  42. Silva B, Lopes LG, Campos P (2021) A new web-based software tool for ICESat and ICESat-2 laser altimetry data processing and visualization. In: IGARSS 2021—2021 IEEE international symposium on geoscience and remote sensing proceedings. IEEE, Piscataway, NJ, pp 5684-5687. https://doi.org/10.1109/IGARSS47720.2021.9553217

  43. Saternos C (2014) Client-server web apps with JavaScript and Java. O’Reilly, Sebastopol, CA

    Google Scholar 

  44. Ngiri-Tumba-Maindombe \(\vert \) Ramsar Sites Information Service. https://rsis.ramsar.org/ris/1784/

Download references

Acknowledgements

This work was partially supported by the Portuguese Foundation for Science and Technology (FCT) through the Laboratory for Robotics and Engineering Systems (LARSyS)—UID/EEA/2020–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, B., Lopes, L.G., Campos, P. (2023). Software Tools for Satellite Laser Altimetry Data Processing, Analysis, and Visualization: An Overview and Assessment. In: Kumar, S., Hiranwal, S., Purohit, S.D., Prasad, M. (eds) Proceedings of International Conference on Communication and Computational Technologies . Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-3951-8_65

Download citation

Publish with us

Policies and ethics