Skip to main content

Performance Comparison for On-chip 3D ECT Using Peripheral and Distributed Electrode Arrangement

  • Conference paper
  • First Online:
Control, Instrumentation and Mechatronics: Theory and Practice

Abstract

Electrical capacitance tomography (ECT) is a non-invasive imaging technique and has potential usage in lab-on-chip (LOC) imaging. The current design of on-chip ECT is reported to utilise the peripheral electrode arrangement where the planar electrodes are arranged at the side of sensing chamber. The on-chip ECT using peripheral electrode arrangement is capable of 2D imaging but little is known on the practical application of the sensor design in 3D imaging as compared to the distributed electrode arrangement sensor. In this paper, the 3D imaging performance of peripheral and distributed electrode arrangement sensors was compared through a simulation study. A cube phantom was used as a test sample for 3D imaging and it was placed at several test positions in the sensing chamber. The 3D image was reconstructed by using the linear back projection (LBP) algorithm. The reconstructed 3D image was quantitatively analysed using the correlation coefficient and the spatial image error. Both electrode arrangement is able to reconstruct 3D images and distributed electrode arrangement sensor performed better than the peripheral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schönberger, M., Hoffstetter, M.: Emerging trends. In: Emerging Trends in Medical Plastic Engineering and Manufacturing, pp. 235–268. Elsevier (2016)

    Google Scholar 

  2. Li, D.: Single-Phase Electrokinetic Flow in Microchannels, 2nd edn. Elsevier Ltd., Amsterdam (2013)

    Google Scholar 

  3. van Duinen, V., Trietsch, S.J., Joore, J., Vulto, P., Hankemeier, T.: Microfluidic 3D cell culture: from tools to tissue models. In: Current Opinion in Biotechnology, vol. 35, pp. 118–126. Elsevier Ltd. (2015)

    Google Scholar 

  4. Coluccio, M.L., et al.: Microfluidic platforms for cell cultures and investigations. Microelectron. Eng. 208, 14–28 (2019)

    Article  Google Scholar 

  5. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., Fleming, R.M.T.: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015)

    Article  Google Scholar 

  6. Yin, X., Wu, H., Jia, J., Yang, Y.: A micro EIT sensor for real-time and non-destructive 3-D cultivated cell imaging. IEEE Sens. J. 18(13), 5402–5412 (2018)

    Article  Google Scholar 

  7. Yang, Y., Jia, J., Smith, S., Jamil, N., Gamal, W., Bagnaninchi, P.O.: A miniature electrical impedance tomography sensor and 3-D Image Reconstruction for Cell Imaging. IEEE Sens. J. 17(2), 514–523 (2017)

    Article  Google Scholar 

  8. Wu, H., Yang, Y., Bagnaninchi, P.O., Jia, J.: Electrical impedance tomography for real-time and label-free cellular viability assays of 3D tumour spheroids. Analyst 143(17), 4189–4198 (2018)

    Article  Google Scholar 

  9. Lemmens, M., Biesmans, H., Bormans, S., Vandenryt, T., Thoelen, R.: Electrical impedance tomography with a lab-on-chip for imaging cells in culture. Phys. Status Solidi 215(15), 1700868 (2018)

    Article  Google Scholar 

  10. Wu, H., Zhou, W., Yang, Y., Jia, J., Bagnaninchi, P.: Exploring the potential of electrical impedance tomography for tissue engineering applications. Materials (Basel) 11(6), 1–11 (2018)

    Google Scholar 

  11. Yang, Y., Wu, H., Jia, J., Bagnaninchi, P.O.: Scaffold-based 3-D cell culture imaging using a miniature electrical impedance tomography sensor. IEEE Sens. J. 19(20), 9071–9080 (2019)

    Article  Google Scholar 

  12. Chen, Z., Yang, Y.: Structure-aware dual-branch network for electrical impedance tomography in cell culture imaging. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

    Google Scholar 

  13. Chen, Z., Yang, Y., Bagnaninchi, P.O.: Hybrid learning-based cell aggregate imaging with miniature electrical impedance tomography. IEEE Trans. Instrum. Meas. 70, 1–10 (2021)

    Google Scholar 

  14. Liu, Z., Yang, Y.: Image reconstruction of electrical impedance tomography based on optical image-guided group sparsity. IEEE Sens. J. 21(19), 21893–21902 (2021)

    Article  Google Scholar 

  15. Ropandi, W.A.N.B., Zulkiflli, N.A., Nawi, N.D., Abdullah, F.A.P., Pusppanathan, J., Zakaria, Z.: Finite element approach using electrical tomography for bioassay application. J. Phys.: Conf. Ser. 1372(1), 012016 (2019)

    Google Scholar 

  16. Lee, S.M., et al.: Real-time monitoring of 3D cell culture using a 3D capacitance biosensor. Biosens. Bioelectron. 77, 56–61 (2016)

    Article  Google Scholar 

  17. Sun, T., Tsuda, S., Zauner, K.-P., Morgan, H.: On-chip electrical impedance tomography for imaging biological cells. Biosens. Bioelectron. 25(5), 1109–1115 (2010)

    Article  Google Scholar 

  18. Nasir, N., Al Ahmad, M.: Cells electrical characterization: dielectric properties, mixture, and modeling theories. J. Eng. 2020, 1–17 (2020)

    Article  Google Scholar 

  19. Ma, G., Soleimani, M.: Regional admittivity reconstruction with multi-frequency complex admittance data using contactless capacitive electrical tomography. IEEE Sens. J. 21(13), 15277–15290 (2021)

    Article  Google Scholar 

  20. Mohd Razali, N.A.: On Chip Planar Capacitance Tomography for Two-Phase Fluid Flow Imaging (2016)

    Google Scholar 

  21. Suo, P., Sun, J., Tian, W., Sun, S., Xu, L.: 3-D image reconstruction in planar array ECT by combining depth estimation and sparse representation. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

    Article  Google Scholar 

  22. Ma, G., Soleimani, M.: A versatile 4D capacitive imaging array: a touchless skin and an obstacle-avoidance sensor for robotic applications. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  23. Amato, S., Hutchins, D.A., Yin, X., Ricci, M., Laureti, S.: Capacitive imaging using fused amplitude and phase information for improved defect detection. NDT E Int. 124(August), 102547 (2021)

    Article  Google Scholar 

  24. Kim, H., Gupta, S., Kim, H.(Eric)., Kim, H., Loh, K.J.: Planar capacitive imaging for composite delamination damage characterization. Meas. Sci. Technol. 32(2), 024010 (2020)

    Google Scholar 

  25. Wen, Y., Zhang, Z., Zhang, Y., Sun, D.: Redundancy analysis of capacitance data of a coplanar electrode array for fast and stable imaging processing. Sensors 18(2), 31 (2017)

    Article  Google Scholar 

  26. Sun, S., et al.: Sensitivity guided image fusion for electrical capacitance tomography. IEEE Trans. Instrum. Meas. 70(c), 1–12 (2021)

    Google Scholar 

  27. Wei, H.Y., Qiu, C.H., Soleimani, M.: Evaluation of planar 3D electrical capacitance tomography: from single-plane to dual-plane configuration. Meas. Sci. Technol. 26(6), 65401 (2015)

    Article  Google Scholar 

  28. Wang, Y., Ji, H., Huang, Z., Wang, B., Li, H.: Study on image reconstruction of capacitively coupled electrical impedance tomography (CCEIT). Meas. Sci. Technol. 30(9), 094002 (2019)

    Article  Google Scholar 

  29. Cui, Z., et al.: A review on image reconstruction algorithms for electrical capacitance/resistance tomography. Sens. Rev. 36(4), 429–445 (2016)

    Article  Google Scholar 

  30. Sun, S., Lu, X., Xu, L., Cao, Z., Sun, J., Yang, W.: Real-time 3-D imaging and velocity measurement of two-phase flow using a twin-plane ECT sensor. IEEE Trans. Instrum. Meas. 70, 1–10 (2021)

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge and thank the Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia for all financial support through FRGS Project code: FRGS/1/2020/TK0/UTM/02/47 and Research University Grants Vote Q.J130000.2451.04G93 and Q.J130000.2551.20H93.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Ling Leow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gooi, W.P., Leow, P.L., Hor, X.F., Mohammad Din, S.b. (2022). Performance Comparison for On-chip 3D ECT Using Peripheral and Distributed Electrode Arrangement. In: Wahab, N.A., Mohamed, Z. (eds) Control, Instrumentation and Mechatronics: Theory and Practice. Lecture Notes in Electrical Engineering, vol 921. Springer, Singapore. https://doi.org/10.1007/978-981-19-3923-5_64

Download citation

Publish with us

Policies and ethics