Skip to main content

Mining Genes and Markers Across Minor Millets Using Comparative Genomics Approaches

  • Chapter
  • First Online:
Omics of Climate Resilient Small Millets

Abstract

Nutritionally important cereals of small millets are used as food crop for poor people around the world. They are mainly cultivated in arid and semi-arid regions of Asian and African countries. Despite the nutritional benefits, small millets remain an underutilized crop and have received very little attention from researchers as well as farmers around the world. In the last few decades, very little research efforts have been made to study the features of small millets. More concentrated research efforts are needed to characterize germplasm resources, developing mapping population and identify quantitative trait loci (QTL) or genes which may help to improve the growth and production of small millets under biotic and abiotic stresses. The annotated genome sequences are currently available for foxtail millet and finger millet. Draft genome sequences are also available for proso millet and barnyard millet. The availability of whole and draft genome sequences of these millets can be used for further studies, such as SNP identification, next-generation sequencing-based allele discovery, association and linkage map construction, identification of candidate genes for agronomically important traits, and marker-assisted breeding programs. Two millets (little millet and kodo millet) have no genome sequences. Research is needed in the future to develop genome sequence for these two millets to improve the growth and production. In this chapter, we discuss about the details on genome sequences of small millets, how to mine genes from draft genome sequence of millets with finger millet as example, and comparative genomic studies of small millets. This chapter will help understand the current progress of research work related to comparative genomics approaches and mining genes across small millets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CISP:

Conserved intron scanning primer

EST-SSR:

Expressed sequences tags-simple sequence repeat

PHT1:

Phosphate transporter 1

QTL:

Quantitative trait loci

SSR:

Simple sequence repeat

ZIP:

Zinc-regulated, iron-regulated transporter-like proteins

References

  • Alagarasan G, Dubey M, Aswathy KS, Chandel G (2017) Genome-wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Front Plant Sci 8:775

    Article  PubMed  PubMed Central  Google Scholar 

  • Amadou I, Gbadamosi, Ole G (2011) Millet-based traditional processed foods and beverages-a review. Cereal Foods World 56:115–121

    Google Scholar 

  • Annor GA, Tyl C, Marcone M, Ragaee S, Marti A (2017) Why do millets have slower starch and protein digestibility than other cereals? Trends Food SciTech 1:73–83

    Article  CAS  Google Scholar 

  • Arya L, Chauhan D, Yadav Y, Verma M (2014) Transferability of simple sequence repeat (SSR) markers developed in finger millet, and pearl millet to kodo millet and barnyard millet. In: Innovative approach in stem cell research, cancer biology and applied biotechnology, pp 60–64

    Google Scholar 

  • Babu B, Rashmi C, Sood S (2018a) Cross transferability of finger millet and maize genomic SSR markers for genetic diversity and population structure analysis of barnyard millet. Indian J Genet Plant Breed 78:364–372

    Google Scholar 

  • Babu BK, Joshi A, Sood S, Agrawal PK (2017) Identification of microsatellite markers for finger millet genomics application through cross transferability of rice genomic SSR markers. Indian J Genet 77:92–98

    Article  CAS  Google Scholar 

  • Babu BK, Sood S, Kumar D, Joshi A, Pattanayak A, Kant L, Upadhyaya HD (2018b) Cross-genera transferability of rice and finger millet genomic SSRs to barnyard millet (Echinochloa spp.). 3 Biotech 8:1–10

    Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H (2012) Reference genome sequence of the model plant Setaria. Nature Biotech 30:555–561

    Article  CAS  Google Scholar 

  • Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. In: Edwards D (ed) Plant bioinformatics, Methods in molecular biology. Humana Press, New York, pp 115–140

    Chapter  Google Scholar 

  • Bora P, Ragaee S, Marcone M (2019) Characterisation of several types of millets as functional food ingredients. Int J Food Sci Nutr 70:1–11

    Article  CAS  Google Scholar 

  • Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One 9(9):e108459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceasar SA, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S (2018) Finger millet [Eleusine coracana (L.) Gaertn.] improvement: current status and future interventions of whole genome sequence. Front. Plant Sci 9:1054

    Google Scholar 

  • Conrad LJ, Khanday I, Johnson C, Guiderdoni E, An G, Vijayraghavan U, Sundaresan V (2014) The polycomb group gene EMF 2B is essential for maintenance of floral meristem determinacy in rice. Plant J 80:883–894

    Article  CAS  PubMed  Google Scholar 

  • David RHA, Ramakrishnan M, Maharajan T, Barathi Kannan K, Babu GA, Daniel MA, Ignacimuthu S (2021) Mining QTL and genes for root traits and biochemical parameters under vegetative drought in south Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn) by association mapping and in silico comparative genomics. Biocatalysis Agril Biotech 32:101935

    Article  CAS  Google Scholar 

  • Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Tech 51:1021–1040

    Article  CAS  Google Scholar 

  • Dong Y, Wang YZ (2015) Seed shattering: from models to crops. Front Plant Sci 6:476

    Article  PubMed  PubMed Central  Google Scholar 

  • Dykes L, Rooney L (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52:105–111

    CAS  Google Scholar 

  • Fu Z, Song J, Zhao J, Jameso PE (2019) Identification and expression of genes associated with the abscission layer controlling seed shattering in Lolium perenne. AoB Plants 11:ply076

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Cao W, Chi H, Wang J, Zhang H, Liu J, Sun B (2018) Whole cereal grains and potential health effects: involvement of the gut microbiota. Food Res Int 103:84–102

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucl acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gull A, Prasad K, Kumar P (2015) Optimization and functionality of millet supplemented pasta. Food Sci Tech 35:626–632

    Article  Google Scholar 

  • Guo L, Qiu J, Ye C, Jin G, Mao L, Zhang H, Fan L (2017) Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Comm 8:1–10

    Article  CAS  Google Scholar 

  • Gupta P, Naithani S, Tello Ruiz MK, Chougule K, D’Eustachio P, Fabregat A, Jaiswal P (2016) Gramene database: navigating plant comparative genomics resources. Curr Plant Biol 7:10–15

    Article  PubMed  Google Scholar 

  • Haque M, Martinek P, Watanabe N, Kuboyama T (2011) Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat. Cereal Res Comm 39:171–178

    Article  CAS  Google Scholar 

  • Hasan M, Maheshwari C, Garg NK, Kumar M (2019) Millets: Nutri-cereals. Biotech Express 6:18–21

    Google Scholar 

  • Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S, Poveda L, Shimizu-Inatsugi R, Baeten J, Francoijs KJ (2017) Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 25:39–47

    Article  PubMed Central  CAS  Google Scholar 

  • Hittalmani S, Mahesh H, Shirke MD, Biradar H, Uday G, Aruna Y, Lohithaswa H, Mohanrao A (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:1–16

    Article  Google Scholar 

  • Krishna TA, Maharajan T, David RHA, Ramakrishnan M, Ceasar SA, Duraipandiyan V, Ignacimuthu S (2018) Microsatellite markers of finger millet (Eleusine coracana (L.) Gaertn) and foxtail millet (Setaria italica (L.) Beauv) provide resources for cross-genome transferability and genetic diversity analyses in other millets. Biocatalysis Agrl Biotech 16:493–501

    Article  Google Scholar 

  • Krishna TA, Maharajan T, Roch GV, Ramakrishnan M, Ceasar SA, Ignacimuthu S (2020) Hybridization and hybrid detection through molecular markers in finger millet [Eleusine coracana (L.) Gaertn.]. J Crop Improv 34:335–355

    Article  CAS  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Prasad M (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8:e67742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Sci 311:1936–1939

    Article  CAS  Google Scholar 

  • Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Yu J (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maharajan T, Antony Ceasar S, Ajeesh Krishna TP, Ignacimuthu S (2021) Finger millet [Eleusine coracana (L.) Gaertn]: An orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sust Food Syst 5:684447

    Article  Google Scholar 

  • Maharajan T, Ceasar SA, Ajeesh Krishna TP, Ramakrishnan M, Duraipandiyan V, Naif Abdulla AD, Ignacimuthu S (2018) Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breed 137:10–26

    Article  CAS  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250:1433–1448

    Article  CAS  PubMed  Google Scholar 

  • Maharajan T, Roch GV, Ceasar SA (2021b) Recent advancements of molecular breeding and functional genomics for improving nitrogen-, phosphorus-and potassium-use efficiencies in wheat. In: Hossain MA et al (eds) Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield. CAB International, Wallingford, pp 170–196

    Google Scholar 

  • Michaelraj P, Shanmugam A (2013) A study on millets based cultivation and consumption in India. Int J Marketing Finan Serv Manag Res 2:49–58

    Google Scholar 

  • Muthamilarasan M, Prasad M (2021) Small millets for enduring food security amidst pandemics. Trends Plant Sci 26:33–40

    Article  CAS  PubMed  Google Scholar 

  • Nambiar VS, Dhaduk J, Sareen N, Shahu T, Desai R (2011) Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. J Appl Pharmal Sci 10:62–67

    Google Scholar 

  • Neelam Y, Kanchan C, Alka S, Alka G (2013) Evaluation of hypoglycemic properties of kodo millet based food products in healthy subjects. IOSR J Pharmacy 3:14–20

    Article  CAS  Google Scholar 

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:1–11

    Article  CAS  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pudake RN, Mehta CM, Mohanta TK, Sharma S, Varma A, Sharma AK (2017) Expression of four phosphate transporter genes from finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and pi stress. 3 Biotech 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Puranik S, Sahu PP, Beynon S, Srivastava RK, Sehgal D, Ojulong H, Yadav R (2020) Genome-wide association mapping and comparative genomics identifies genomic regions governing grain nutritional traits in finger millet (Eleusine coracana L. Gaertn). Plants, People, Planet 2(6):649–662

    Article  Google Scholar 

  • Radhika G, Sathya RM, Ganesan A, Saroja R, Vijayalakshmi P, Sudha V, Mohan V (2011) Dietary profile of urban adult population in South India in the context of chronic disease epidemiology (CURES–68). Public Health Nutr 14:591–598

    Article  PubMed  Google Scholar 

  • Rajput SG, Plyler-Harveson T, Santra DK (2014) Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 5:175–186

    Article  CAS  Google Scholar 

  • Ramakrishna C, Singh S, Raghavendrarao S, Padaria JC, Mohanty S, Sharma TR, Solanke AU (2018) The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Antony Ceasar S, Duraipandiyan V, Vinod KK, Kalpana K, Al-Dhabi NA, Ignacimuthu S (2016) Tracing QTLs for leaf blast resistance and agronomic performance of finger millet (Eleusine coracana (L.) Gaertn.) genotypes through association mapping and in silico comparative genomics analyses. PLoS One 11(7):e0159264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Vinod KK, Duraipandiyan V, Ajeesh Krishna TP, Upadhyaya HD, Ignacimuthu S (2017) Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis. PLoS One 12(8):e0183261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roch GV, Maharajan T, Krishna TA, Ignacimuthu S, Ceasar SA (2020) Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta 252(6):1–9

    Article  CAS  Google Scholar 

  • Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Safety 12:281–295

    Article  CAS  Google Scholar 

  • Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Ma C (2019) Improving lodging resistance: using wheat and rice as classical examples. Int J Mol Sci 20:4211

    Article  PubMed Central  CAS  Google Scholar 

  • Singh P, Raghuvanshi RS (2012) Finger millet for food and nutritional security. Afr J Food Sci 6:77–84

    CAS  Google Scholar 

  • Tian B, Luan S, Zhang L, Liu Y, Zhang L, Li H (2018) Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res 217:104–112

    Article  Google Scholar 

  • Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ML, Barkley NA, Yu JK, Dean RE, Newman ML, Sorrells ME, Pederson GA (2005) Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour 3:45–57

    Article  CAS  Google Scholar 

  • Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agrl Food Chem 47:4500–4505

    Article  CAS  Google Scholar 

  • Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • Xiao CL, Chen Y, Xie SQ et al (2017) MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat Methods 14:1072–1074

    Article  CAS  PubMed  Google Scholar 

  • Yano K, Ookawa T, Aya K, Ochiai Y, Hirasawa T, Ebitani T, Matsuoka M (2015) Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol Plant 8:303–314

    Article  CAS  PubMed  Google Scholar 

  • Yoon J, Cho LH, Kim SL, Choi H, Koh HJ, An G (2014) The BEL 1-type homeobox gene SH 5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J 79:717–728

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30:549–554

    Article  CAS  Google Scholar 

  • Zhong J, Peng Z, Peng Q, Cai Q, Peng W, Chen M, Yao J (2018) Regulation of plant height in rice by the Polycomb group genes OsEMF2b, OsFIE2 and OsCLF. Plant Sci 267:157–167

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Zhang H (2019) The genome of broomcorn millet. Nat Commun 10:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maharajan, T., Ceasar, S.A., Krishna, T.P.A., Ignacimuthu, S. (2022). Mining Genes and Markers Across Minor Millets Using Comparative Genomics Approaches. In: Pudake, R.N., Solanke, A.U., Sevanthi, A.M., Rajendrakumar, P. (eds) Omics of Climate Resilient Small Millets. Springer, Singapore. https://doi.org/10.1007/978-981-19-3907-5_9

Download citation

Publish with us

Policies and ethics