Skip to main content

MLD Classification Model of Visual Features of Multi-layer and Multi-pass Molten Pool During Robotic MAG Welding of Medium-Thick Steel Plates

  • Conference paper
  • First Online:
Transactions on Intelligent Welding Manufacturing (RWIA 2020)

Part of the book series: Transactions on Intelligent Welding Manufacturing ((TRINWM))

  • 213 Accesses

Abstract

Molten pool image segmentation and feature extraction based on vision sensor is one of the core tasks of robotic automated welding. The Geodesic active contour model (GAC) method is used for the molten pool image in the multi-layer and multi-pass welding process (non-swing welding), and the molten pool contour can be effectively separated from the two-dimensional image obtained by the welding vision sensor. Through further analysis of the extracted contour, calculation of melting width, comprehensive evaluation of the radius of curvature of the front, upper and lower ends of the molten pool, the molten pool in multi-layer multi-pass welding can be divided into seven types. Corresponding to the seven forming conditions in multi-layer and multi-pass welding, the MLD classification model is established. The experimental results show that the image segmentation method based on GAC can effectively obtain the edge of MAG weld pool. The characteristics of weld pool can be exactly corresponding to the seven types of multi-layer and multi-pass, which lays a foundation for the MLD dynamic control of welding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, S.-B.: On intelligentized welding manufacturing. In: Tarn, Tzyh-Jong., Chen, Shan-Ben., Chen, Xiao-Qi. (eds.) Robotic Welding, Intelligence and Automation. AISC, vol. 363, pp. 3–34. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18997-0_1

    Chapter  Google Scholar 

  2. Yang, C., et al.: Multi-pass path planning for thick plate by DSAW based on vision sensor. Sens. Rev. (2014)

    Google Scholar 

  3. Chen, Y., Yang, C., Chen, H., Zhang, H., Chen, S.: Microstructure and mechanical properties of HSLA thick plates welded by novel double-sided gas metal arc welding. Int. J. Adv. Manuf. Technol. 78(1–4), 457–464 (2014). https://doi.org/10.1007/s00170-014-6477-0

    Article  Google Scholar 

  4. Selvi, S., Vishvaksenan, A., Rajasekar, E.: Cold metal transfer (CMT) technology-an overview. Defence Technol. 14(1), 28–44 (2018)

    Article  Google Scholar 

  5. Pickin, C., Young, K.: Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci. Technol. Weld. Joining 11(5), 583–585 (2006)

    Article  Google Scholar 

  6. Zhang, H., Feng, J., He, P.: Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steel and wrought aluminium. Mater. Sci. Technol. 24(11), 1346–1349 (2008)

    Article  Google Scholar 

  7. Chen, S.-B., Wu, J.: Intelligentized Methodology for Arc Welding Dynamical Processes. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-85642-9

  8. Chen, S., Lv, N.: Research evolution on intelligentized technologies for arc welding process. J. Manuf. Process. 16(1), 109–122 (2014)

    Article  Google Scholar 

  9. Yong Jie, P., et al.: Application of multi-agent systems in welding flexible manufacturing system. Trans. China Weld. Inst. 5, 23 (2002)

    Google Scholar 

  10. Piao, Y.J., Zhu, Z.Y., Chen, S.B.: Multi-agent collaboration control for multi-manipulator WFMS. Acta Simulata Systematica Sinica 16(11), 2571–2574 (2004)

    Google Scholar 

  11. Zhang, L.X., et al.: Agent-based modeling and control of remote robotic welding system. In: Tarn, T.J., Chen, S.B., Zhou, C. (eds.) Robotic Welding, Intelligence and Automation. Lecture Notes in Control and Information Sciences, vol. 362, pp. 187–194. Springer, Heidelberg (2007)

    Google Scholar 

  12. Kong, M., Chen, S.: Al alloy weld pool control of welding robot with passive vision. Sens. Rev. 29(1), 28–37 (2009)

    Article  Google Scholar 

  13. Wang, J.J., Lin, T., Chen, S.B.: Obtaining weld pool vision information during aluminium alloy TIG welding. Int. J. Adv. Manuf. Technol. 26(3), 219–227 (2005)

    Article  Google Scholar 

  14. Xu, Y., et al.: Computer vision technology for seam tracking in robotic GTAW and GMAW. Rob. Comput.-Integr. Manuf. 32, 25–36 (2015)

    Article  Google Scholar 

  15. Lv, N., et al.: Automated control of welding penetration based on audio sensing technology. J. Mater. Process. Technol. 250, 81–98 (2017)

    Article  Google Scholar 

  16. Na, L.V., Gu, F., Yan-ling, X., Hui, Z., Shan-ben, C., Ju-jia, Z.: Real-time monitoring of welding path in pulse metal-inert gas robotic welding using a dual-microphone array. Int. J. Adv. Manuf. Technol. 90(9–12), 2955–2968 (2016). https://doi.org/10.1007/s00170-016-9571-7

    Article  Google Scholar 

  17. Huang, Y., et al.: EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM. J. Mater. Process. Technol. 239, 92–102 (2017)

    Article  Google Scholar 

  18. Huang, Y., et al.: Investigation of porosity in pulsed GTAW of aluminum alloys based on spectral and X-ray image analyses. J. Mater. Process. Technol. 243, 365–373 (2017)

    Article  Google Scholar 

  19. Zhang, Z., Kannatey-Asibu, E., Chen, S., Huang, Y., Xu, Y.: Online defect detection of Al alloy in arc welding based on feature extraction of arc spectroscopy signal. Int. J. Adv. Manuf. Technol. 79(9–12), 2067–2077 (2015). https://doi.org/10.1007/s00170-015-6966-9

    Article  Google Scholar 

  20. Zhang, Z., et al.: Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding. Mech. Syst. Signal Process. 60, 151–165 (2015)

    Article  Google Scholar 

  21. Chen, S.: Research evolution on intelligentized technologies for robotic welding at SJTU. In: Robotic Welding, Intelligence and Automation, pp. 3–14. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19959-2_1

  22. He, Y., et al.: Fault correction of algorithm implementation for intelligentized robotic multipass welding process based on finite state machines. Rob. Comput. Integr. Manuf. 59, 28–35 (2019)

    Article  Google Scholar 

  23. Zhou, H., et al.: Mixed logic dynamic model for the hybrid characteristics of the dual robotic welding process and system. In: 2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO) (2016)

    Google Scholar 

  24. Ma, H., Chen, S.: Mixed logical dynamical model for robotic welding system. In: Tarn, T.J., Chen, S.B., Fang, G. (eds.) Robotic Welding, Intelligence and Automation, pp. 123–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19959-2_15

  25. Ma, H., et al.: Mixed logical dynamical model for back bead width prediction of pulsed GTAW process with misalignment. J. Mater. Process. Technol. 210(14), 2036–2044 (2010)

    Article  Google Scholar 

  26. Ma, H., et al.: Mixed logical dynamical model of the pulsed gas tungsten arc welding process with varied gap. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 225(3), 270–280 (2011)

    Google Scholar 

  27. Chen, S.B., et al.: Robotic welding systems with vision-sensing and self-learning neuron control of arc welding dynamic process. J. Intell. Rob. Syst. 36(2), 191–208 (2003)

    Article  Google Scholar 

  28. Yong, Z., et al.: Weld pool image processing algorithm for seam tracking of welding robot. In: Industrial Electronics & Applications (2011)

    Google Scholar 

  29. Shen, H.Y., et al.: Research on weld pool control of welding robot with computer vision. Ind. Robot. 34(6), 467–475 (2007)

    Article  Google Scholar 

  30. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. (2007)

    Google Scholar 

  31. Xu, Y., Fang, G., Chen, S., Zou, J.J., Ye, Z.: Real-time image processing for vision-based weld seam tracking in robotic GMAW. Int. J. Adv. Manuf. Technol. 73(9–12), 1413–1425 (2014). https://doi.org/10.1007/s00170-014-5925-1

    Article  Google Scholar 

  32. Zheng, R., et al.: Measurement of laser welding pool geometry using a closed convex active contour model. Meas. Sci. Technol. 25(3), 116–121 (2014)

    Google Scholar 

  33. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vision 22(1), 61–79 (1997)

    Article  Google Scholar 

  34. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China under the Grant No. 61873164.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huabin Chen or Shanben Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, H., He, Y., Chen, H., Chen, S. (2022). MLD Classification Model of Visual Features of Multi-layer and Multi-pass Molten Pool During Robotic MAG Welding of Medium-Thick Steel Plates. In: Chen, S., Zhang, Y., Feng, Z. (eds) Transactions on Intelligent Welding Manufacturing. RWIA 2020. Transactions on Intelligent Welding Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-19-3902-0_4

Download citation

Publish with us

Policies and ethics