Skip to main content

The Virtual Geographic Environments: More than the Digital Twin of the Physical Geographical Environments

  • Chapter
  • First Online:
New Thinking in GIScience

Abstract

With past more than 20 years of development, virtual geographic environments (VGE) had gradually matured and formed its own supporting theories and remarkable characteristics. During this period, the remarkable steps forwards of VGE were often inseparable from the promotion of new technologies. Recently, the term of digital twins has emerged and attracted researchers from the community of geographic information sciences to discuss what the digital twins of the physical geographic environments should be alike. This chapter focuses on discussing the conceptual connotations and typical characteristics of both virtual geographic environments and digital twins, analyzes the basic requirements for building digital twins of physical geographic environments, and summarizes whether VGE can match the framework of digital twins of physical geographic environments. The final conclusions of this chapter declare that: The concepts and framework of VGE are essentially consistent with those of digital twins; The characteristics of VGE can absolutely meet the basic requirements of digital twins of physical geographic environments; What’s more, VGE has been more than a digital twin of the physical geographic environments, for instance, it can extensively fit well with the conceptual framework of metaverse of geographic environments which have eight characteristics including identity, friends, immersive, low friction, variety, anywhere, economy, civility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batty, M. (1997). Virtual geography. Futures, 29(4–5), 337–352.

    Article  Google Scholar 

  • Chen, M., & Lin, H. (2018). Virtual geographic environments (VGE): Originating from or beyond virtual reality (VR)? International Journal of Digital Earth, 11(4), 329–333.

    Article  MathSciNet  Google Scholar 

  • Chen, M., Lin, H., Kolditz, O., & Chen, C. (2015). Developing dynamic virtual geographic environments (VGE) for geographic research. Environmental Earth Sciences, 74(10), 6975–6980.

    Article  Google Scholar 

  • Chen, M., Lin, H., & Lu, G. (2016). Virtual geographic environments. International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology (pp. 1–11).

    Google Scholar 

  • Chen, Y., Lin, H., Xiao, L., Jing, Q., You, L., Ding, Y., Hu, M., & Devlin, A. T. (2020). Versioned geoscientific workflow for the collaborative geo-simulation of human-nature interactions—A case study of global change and human activities. International Journal of Digital Earth, 1–30.

    Google Scholar 

  • Farsi, M., Daneshkhah, A., Hosseinian-Far, A., & Jahankhani, H. (2020). Digital twin technologies and smart cities. Springer.

    Book  Google Scholar 

  • Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8, 108952–108971.

    Article  Google Scholar 

  • Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and US Air Force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA.

    Google Scholar 

  • Gong, J., & Lin, H. (2006). A collaborative virtual geographic environment: Design and development. In S. Balram, & S. Dragicevic (Eds.), Collaborative geographic information systems (pp. 186–206). IGI Global.

    Google Scholar 

  • Gong, J., Li, W., Zhang, G., Shen, S., Huang, L., & Sun, J. (2018). An augmented geographic environment for geo-process visualization—A case of crowd evacuation simulation. Acta Geodaetica Et Cartographica Sinica, 47(8), 1089.

    Google Scholar 

  • Grieves, M. (2003). Digital twin: Manufacturing excellence through virtual factory replication.

    Google Scholar 

  • Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems (pp. 85–113). Springer.

    Google Scholar 

  • Guo, H., Goodchild, M. F., & Annoni, A. (2020). Manual of digital earth. Springer Nature.

    Google Scholar 

  • Guo, Q., Liu, H., Hassan, F. M., Bhatt, M. W., & Buttar, A. M. (2021). Application of UAV tilt photogrammetry in 3D modeling of ancient buildings. International Journal of System Assurance Engineering and Management, 13(1), 424–436.

    Google Scholar 

  • Holler, M., Uebernickel, F., & Brenner, W. (2016). Digital twin concepts in manufacturing industries—A literature review and avenues for further research. In 18th International Conference on Industrial Engineering and Engineering Management (IJIE).

    Google Scholar 

  • Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52.

    Article  Google Scholar 

  • Laurini, R. (2014). A conceptual framework for geographic knowledge engineering. Journal of Visual Languages & Computing, 25(1), 2–19.

    Article  Google Scholar 

  • Li, D., Yu, W., & Shao, Z. (2021). Smart city based on digital twins. Computational Urban Science, 1(4), 11.

    Google Scholar 

  • Lin, H., & Batty, M. (2009). Virtual geographic environments. Science Press.

    Google Scholar 

  • Lin, H., & Chen, M. (2015). Managing and sharing geographic knowledge in virtual geographic environments (VGE). Annals of GIS, 21(4), 261–263.

    Article  Google Scholar 

  • Lin, H., Chen, M., & Lu, G. (2013). Virtual geographic environment: A workspace for computer-aided geographic experiments. Annals of the Association of American Geographers, 103(3), 465–482.

    Article  Google Scholar 

  • Lin, H., & Gong, J. (2001). Exploring virtual geographic environments. Geographic Information Sciences, 7(1), 1–7.

    MathSciNet  Google Scholar 

  • Lin, H., Gong, J., & Shi, J. (2003). From maps to GIS and VGE—A discussion on the evolution of the geographic language (in Chinese). Geography and Geo-Information Science, 19(4), 6.

    Google Scholar 

  • Lin, H., & Zhu, Q. (2005). Virtual geographic environments. In S. Zlatanova, & D. Prosperi (Eds.), Large-scale 3D data integration: Challenges and opportunities (pp. 211–231). CRC Press.

    Google Scholar 

  • Liu, M., Fang, S., Dong, H., & Xu, C. (2021). Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346–361.

    Article  Google Scholar 

  • Lü, G. (2011). Geographic analysis-oriented virtual geographic environment: Framework, structure and functions. Science China Earth Sciences, 54(5), 733–743.

    Article  Google Scholar 

  • Lü, G., Chen, M., Yuan, L., Zhou, L., Wen, Y., Wu, M., Hu, B., Yu, Z., Yue, S., & Sheng, Y. (2018). Geographic scenario: A possible foundation for further development of virtual geographic environments. International Journal of Digital Earth, 11(4), 356–368.

    Article  Google Scholar 

  • Moon, D., Chung, S., Kwon, S., Seo, J., & Shin, J. (2019). Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Automation in Construction, 98, 322–331.

    Article  Google Scholar 

  • Nativi, S., Mazzetti, P., & Craglia, M. (2021). Digital ecosystems for developing digital twins of the earth: The destination earth case. Remote Sensing, 13(11), 2119.

    Article  Google Scholar 

  • Qi, M., Chi, T., & Zhang, X., & Huang, J. (2004). Collaborative virtual geographic environment: concepts, features and construction. In IEEE International Conference on Geoscience and Remote Sensing Symposium (Vol. 7, pp. 4866–4869).

    Google Scholar 

  • Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6, 3585–3593.

    Article  Google Scholar 

  • Shao, G., & Helu, M. (2020). Framework for a digital twin in manufacturing: Scope and requirements. Manufacturing Letters, 24, 105–107.

    Article  Google Scholar 

  • Song, Y., Gong, J., Li, Y., Cui, T., Fang, L., & Cao, W. (2013). Crowd evacuation simulation for bioterrorism in micro-spatial environments based on virtual geographic environments. Safety Science, 53, 105–113.

    Article  Google Scholar 

  • Tao, F., & Qi, Q. (2019). Make more digital twins. Nature Publishing Group.

    Google Scholar 

  • Voinov, A., Çöltekin, A., Chen, M., & Beydoun, G. (2018). Virtual geographic environments in socio-environmental modeling: A fancy distraction or a key to communication? International Journal of Digital Earth, 11(4), 408–419.

    Article  Google Scholar 

  • Wan, G., Lin, H., Zhu, Q., & Liu, Y. (2021). Virtual geographical environment. Advances in cartography and geographic information engineering (pp. 443–477). Springer.

    Google Scholar 

  • Wikipedia. (2021). Digital twin.

    Google Scholar 

  • Xu, B. (2009). A prototype of collaborative virtual geographic environments to facilitate air pollution simulation. The Chinese University of Hong Kong.

    Google Scholar 

  • Xu, B., Gong, J., Lin, H., Li, W., Zhang, J., Zhu, J., & Wu, X. (2005). Virtual geographic environment database design and collaboration. In IEEE International Conference on Geoscience and Remote Sensing Symposium (Vol. 2, pp. 25–29).

    Google Scholar 

  • Xu, B., Lin, H., Chiu, L., Hu, Y., Zhu, J., Hu, M., & Cui, W. (2011). Collaborative virtual geographic environments: A case study of air pollution simulation. Information Sciences, 181(11), 2231–2246.

    Google Scholar 

  • Yang, W., Tan, Y., Yoshida, K., & Takakuwa, S. (2017). Digital twin-driven simulation for a cyber-physical system in Industry 4.0. DAAAM International Scientific Book (pp. 227–234).

    Google Scholar 

  • You, L., & Lin, H. (2016a). A conceptual framework for virtual geographic environments knowledge engineering. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.

    Google Scholar 

  • You, L., & Lin, H. (2016b). Towards a research agenda for knowledge engineering of virtual geographical environments. Annals of GIS, 22(3), 163–171.

    Google Scholar 

  • Yu, D., Tang, L., Ye, F., & Chen, C. (2021). A virtual geographic environment for dynamic simulation and analysis of tailings dam failure. International Journal of Digital Earth, 14(9), 1194–1212.

    Article  Google Scholar 

  • Zhao, H., Bai, R., & Liu, G. (2011). 3D modeling of open pit based on AutoCAD and application. Procedia Earth and Planetary Science, 3, 258–265.

    Article  Google Scholar 

  • Zhu, J., Gong, J. H., Liu, W. G., Song, T., & Zhang, J. Q. (2007). A collaborative virtual geographic environment based on P2P and Grid technologies. Information Sciences, 177(21), 4621–4633.

    Article  Google Scholar 

  • Zhu, J., Yin, L., Wang, J., Zhang, H., Hu, Y., & Liu, Z. (2014). Dam-break flood routing simulation and scale effect analysis based on virtual geographic environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 105–113.

    Article  Google Scholar 

  • Zhu, J., Zhang, H., Yang, X., Yin, L., Li, Y., Hu, Y., & Zhang, X. (2016). A collaborative virtual geographic environment for emergency dam-break simulation and risk analysis. Journal of Spatial Science, 61(1), 133–155.

    Article  Google Scholar 

  • Zomer, R., Ustin, S., & Ives, J. (2002). Using satellite remote sensing for DEM extraction in complex mountainous terrain: Landscape analysis of the Makalu Barun National Park of eastern Nepal. International Journal of Remote Sensing, 23(1), 125–143.

    Article  Google Scholar 

Download references

Acknowledgements

Support for this chapter was partially funded by the National Natural Science Foundation of China (No. 41771442 and No. 41271402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingli Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Higher Education Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, H., Xu, B., Chen, Y., Jing, Q., You, L. (2022). The Virtual Geographic Environments: More than the Digital Twin of the Physical Geographical Environments. In: Li, B., Shi, X., Zhu, AX., Wang, C., Lin, H. (eds) New Thinking in GIScience. Springer, Singapore. https://doi.org/10.1007/978-981-19-3816-0_3

Download citation

Publish with us

Policies and ethics