Skip to main content

GeoAI and the Future of Spatial Analytics

  • Chapter
  • First Online:
New Thinking in GIScience

Abstract

This chapter discusses the challenges of traditional spatial analytical methods in their limited capacity to handle big and messy data, as well as mining unknown or latent patterns. It then introduces a new form of spatial analytics—geospatial artificial intelligence (GeoAI)—and describes the advantages of this new strategy in big data analytics and data-driven discovery. Finally, a convergent spatial analytical framework is suggested as a potential future pathway for spatial analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albawi, S., Mohammed, T. A., & Al-Zawi, S. 2017. Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology (ICET) (pp. 1–6).

    Google Scholar 

  • Anselin, L., & Rey, S. (2012). Spatial econometrics in an age of CyberGIScience. International Journal of Geographical Information Science, 26(12), 2211–2226. https://doi.org/10.1080/13658816.2012.664276.S2CID942116

    Article  Google Scholar 

  • Arundel, S., T., Li, W., & Wang, S. (2020). GeoNat v1.0: A dataset for natural feature mapping with artificial intelligence and supervised learning. Transactions in GIS, 24(3), 556–572.

    Google Scholar 

  • Fukushima, K. (2007). Neocognitron. Scholarpedia, 2(1), 1717.

    Article  MathSciNet  Google Scholar 

  • GAO (2021). 2020 Census: Innovations helped with implementation, but Bureau can do more to realize future benefits. United States Government Accountability Office (GAO). https://www.gao.gov/assets/gao-21-478.pdf

  • Goodchild, M. F. (2009). Challenges in spatial analysis. In A. S. Fotheringham, & P. A. Rogerson (Eds.), The SAGE handbook of spatial analysis (pp. 465–480). SAGE Publishing.

    Google Scholar 

  • Goodchild, M. F., & Li, W. (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35).

    Google Scholar 

  • Golledge, R. G. (2009). The future for spatial analysis. In A. S. Fotheringham, & P. A. Rogerson (Eds.), The SAGE handbook of spatial analysis (pp. 465–480). SAGE.

    Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.

    Article  Google Scholar 

  • Laura, J., Li, W., Rey, S. J., & Anselin, L. (2015). Parallelization of a regionalization heuristic in distributed computing platforms—A case study of parallel-p-compact-regions problem. International Journal of Geographical Information Science, 29(4), 536–555.

    Article  Google Scholar 

  • Li, W. (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science, 20, 71–77.

    Google Scholar 

  • Li, W. (2021). GeoAI and deep learning. International Encyclopedia of Geography: People, the Earth, Environment and Technology, 1–6.https://doi.org/10.1002/9781118786352.wbieg2083

  • Li, W., Batty, M., & Goodchild, M. F. (2020). Real-time GIS for smart cities. International Journal of Geographical Information Science, 34(2), 311–324.

    Article  Google Scholar 

  • Li, Z., Fotheringham, A. S., Li, W., & Oshan, T. (2019a). Fast Geographically Weighted Regression (FastGWR): A scalable algorithm to investigate spatial process heterogeneity in millions of observations. International Journal of Geographical Information Science, 33(1), 155–175.

    Article  Google Scholar 

  • Li, W., Goodchild, M. F., Anselin, L., & Weber, K. T. (2019b). A smart service-oriented CyberGIS framework for solving data-intensive geospatial problems. In CyberGIS for geospatial discovery and innovation (pp. 189–211). Springer.

    Google Scholar 

  • Li, W., & Hsu, C. Y. (2020). Automated terrain feature identification from remote sensing imagery: A deep learning approach. International Journal of Geographical Information Science, 34(4), 637–660.

    Article  Google Scholar 

  • Li, W., Liu, Y., & Wang, S. (2022). Real-time GIS and geocomputation. In J. P. Wilson (Ed.), The geographic information science & technology body of knowledge (3rd Quarter 2021 Edition) (in press).

    Google Scholar 

  • Li, W., Raskin, R., & Goodchild, M. F. (2012). Semantic similarity measurement based on knowledge mining: An artificial neural net approach. International Journal of Geographical Information Science, 26(8), 1415–1435.

    Article  Google Scholar 

  • Li, W., Shao, H., Wang, S., Zhou, X., & Wu, S. (2016). A2CI: A cloud-based, service-oriented geospatial cyberinfrastructure to support atmospheric research. In Cloud Computing in Ocean and Atmospheric Sciences (pp. 137–161). Academic Press.

    Google Scholar 

  • Marcus, G. (2018). Deep learning: A critical appraisal (pp. 1–27). arXiv preprint arXiv:1801.00631.

  • Miller, H. J., & Goodchild, M. F. (2015). Data-driven geography. GeoJournal, 80, 449–461. https://doi.org/10.1007/s10708-014-9602-6

    Article  Google Scholar 

  • Murray, A. T. (2021). Significance assessment in the application of spatial analytics. Annals of the American Association of Geographers, 111(6), 1740–1755.

    Google Scholar 

  • Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269.

    Article  Google Scholar 

  • Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., & Carvalhais, N. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195–204.

    Article  Google Scholar 

  • Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J. (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836.

    Article  Google Scholar 

  • Rolnick, D., Veit, A., Belongie, S., & Shavit, N. (2017). Deep learning is robust to massive label noise. arXiv preprint arXiv:1705.10694.

  • Wang, S. (2010). A cyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers, 100(3), 535–557.

    Article  Google Scholar 

  • Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big Data and cloud computing: Innovation opportunities and challenges. International Journal of Digital Earth, 10, 13–53. https://doi.org/10.1080/17538947.2016.1239771

    Article  Google Scholar 

  • Yang, Z., Li, W., Chen, Q., Wu, S., Liu, S., & Gong, J. (2018). A scalable cyberinfrastructure and cloud computing platform for forest aboveground biomass estimation based on the Google Earth Engine. International Journal of Digital Earth, 12(9), 995–1012.

    Article  Google Scholar 

  • Yuan, M., Buttenfield, B. P., Gahegan, M. N., & Miller, H. (2004). Geospatial data mining and knowledge discovery. In A research agenda for geographic information science (p. 24). CRC Press.

    Google Scholar 

  • Zhang, W. (1988). Shift-invariant pattern recognition neural network and its optical architecture. In Proceedings of Annual Conference of the Japan Society of Applied Physics.

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Science Foundation (NSF) under grant BCS-1853864. Li acknowledges additional funding support from NSF (BCS-1455349, GCR-2021147, PLR-2120943, and OIA-2033521). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U. S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Higher Education Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, W., Arundel, S.T. (2022). GeoAI and the Future of Spatial Analytics. In: Li, B., Shi, X., Zhu, AX., Wang, C., Lin, H. (eds) New Thinking in GIScience. Springer, Singapore. https://doi.org/10.1007/978-981-19-3816-0_17

Download citation

Publish with us

Policies and ethics