Skip to main content

Smart Congestion Control and Path Scheduling in MPTCP

  • Conference paper
  • First Online:
IOT with Smart Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 312))

  • 518 Accesses

Abstract

Featuring the recent rise of mobile technology, new devices with a variety of connection ports have become more popular. Multiple communication interfaces may now be usable over a single TCP connection thanks to the multi-path transmission control protocol (MPTCP), which was developed to speed up Internet use. There are three main design aims for the MPTCP congestion management algorithms: better performance, more fairness, and congestion balancing. MPTCP congestion control algorithms now in use cannot achieve these design goals. Due to its inability to leverage the network, an MPTCP congestion-control algorithm, such as OLIA, often results in poor performance. With the current Internet’s enormous volume of transient traffic, it is difficult to keep track of MPTCP congestion management techniques. MPTCP congestion control methods may benefit from being aware of current network delay conditions. There are various sub flows in an MPTCP connection, and the schedulers are employed to deal with this heterogeneity. MPTCP’s scheduler is an important part of the software. In this study, MPTCP congestion management and MPTCP schedulers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981). https://doi.org/10.1016/0022-2836(81)90087-5

    Article  Google Scholar 

  2. Ford, A., Raiciu, C., Handley, M., Bonaventure, O., Paasch, C.: [Online] (2013). Available: https://tools.ietf.org/html/rfc6824

  3. Wu, J., Yuen, C., Cheng, B., Wang, M., Chen, J.: Streaming high-quality mobile video with multipath TCP in heterogeneous wireless networks. IEEE Trans. Mob. Comput. 15, 2345–2361 (2015)

    Article  Google Scholar 

  4. Wischik, D., Raiciu, C., Greenhalgh, A., Handley, M.: Design

    Google Scholar 

  5. Staff, A.: [Online], (2019). Available: http://appleinsider.com/articles/13/09/20/apple-found-to-be-using-advanced-multipath-tcp-networking-in-ios-7

  6. [Online] (2019). Available: https://multipathtcp.org/pmwiki.php/Users/Android

  7. Ford, A., Raiciu, C., Handley, M., Barre, S., Iyengar, J.: Architectural guidelines for multipath TCP development. IETF RFC 6182–6182 (2011)

    Google Scholar 

  8. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP extensions for multipath operation with multiple addresses. IETF RFC 6824 (2013)

    Google Scholar 

  9. Raiciu, C., Handley, M., Wischik, D.: Coupled congestion control for multipath transport protocols. IETF RFC 6356 (2011)

    Google Scholar 

  10. Khalili, R., Gast, N., Popovic, M., Boudec, J.: MPTCP is not pareto-optimal: performance issues and a possible solution. IEEE/ACM Trans. Networking 21(5), 1651–1665 (2013)

    Article  Google Scholar 

  11. Peng, Q., Valid, A., Hwang, J., Low, S.: Multipath TCP: analysis, design and implementation. IEEE/ACM Trans. Networking 24(1), 596–609 (2016)

    Article  Google Scholar 

  12. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Syst. Rev. 42(5), 64–74 (2008)

    Article  Google Scholar 

  13. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. IEEE INFOCOM 1–12 (2006)

    Google Scholar 

  14. Kato, T., Diwakar, A., Yamamoto, R., Ohzahata, S., Suzuki, N.: Performance evaluation of maltipath TCP congestion control. ICN 2019: 18th International Conference on Networks, pp. 19–24 (2019)

    Google Scholar 

  15. Ford, A., Raiciu, C., Handley, M., Bonaventure, O., Paasch, C.: Rfc 6824: TCP extensions for multipath operation with multiple addresses. Internet Eng. Task Force (2013)

    Google Scholar 

  16. Pokhrel, S.R., Ding, J., Park, J., Park, O.S., Choi, J.: Towards enabling critical mmtc: a review of urllc within mmtc. IEEE Access, vol. 8, pp. 131796–131813 (2020)

    Google Scholar 

  17. Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: Experimental evaluation of multipath TCP schedulers. Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity Sharing Workshop, pp. 27–32 (2014)

    Google Scholar 

  18. Abbasloo, S., Yen, C.Y., Chao, H.J.: Wanna make your TCP scheme great for cellular networks? Let machines do it for you! IEEE J. Sel. Areas Commun. 39, 265–279 (2020)

    Article  Google Scholar 

  19. Pokhrel, S.R., Panda, M., Vu, H.L.: Fair coexistence of regular and multipath TCP over wireless last-miles. IEEE Trans. Mob. Comput. 18, 574–587 (2018)

    Article  Google Scholar 

  20. Barré, S., Paasch, C., Bonaventure, O.: Multipath TCP: from theory to practice. International Conference on Research in Networking, pp. 444–457 (2011)

    Google Scholar 

  21. Pokhrel, S.R., Mandjes, M.: Improving multipath TCP performance over wifi and cellular networks: an analytical approach. IEEE Trans. Mobile Comput. 18, 2562–2576 (2018)

    Article  Google Scholar 

  22. Sommers, J., Barford, P.: Cell versus wifi: on the performance of metro area mobile connections. Proceedings of the 2012 Internet Measurement Conference, pp. 301–314 (2012)

    Google Scholar 

  23. Postel, J.: Assigned numbers. RFC 790, USC/Information Sciences Institute (1981)

    Google Scholar 

  24. Ferlin, S., Alay, Ö., Mehani, O., Boreli, R.: Blest: blocking estimation-based MPTCP scheduler for heterogeneous networks. 2016 IFIP Networking Conference (IFIP Networking) and Workshops, pp. 431–439 (2016)

    Google Scholar 

  25. Lim, Y., Nahum, E.M., Towsley, D., Gibbens, R.J.: Ecf: an MPTCP path scheduler to manage heterogeneous paths. Proceedings of the 13th international conference on emerging networking experiments and technologies, pp. 147–159 (2017)

    Google Scholar 

  26. Guo, Y. E., Nikravesh, A., Mao, Z.M., Qian, F., Sen, S.: Accelerating multipath transport through balanced subflow completion. Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pp. 141–153 (2017)

    Google Scholar 

  27. Adarsh, V., Schmitt, P., Belding, E.: Mptcp performance over heterogenous subpaths. 2019 28th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9 (2019)

    Google Scholar 

  28. Pokhrel, S.R., Choi, J.: Low-delay scheduling for internet of vehicles: load-balanced multipath communication with FEC. IEEE Trans. Commun. 67, 8489–8501 (2019)

    Article  Google Scholar 

  29. Pokhrel, S.R., Garg, S.: Multipath communication with deep q-network for industry 4.0 automation and orchestration. IEEE Transactions on Industrial Informatics (2020)

    Google Scholar 

  30. Pokhrel, S.R., Singh, S.: Compound TCP performance for industry 4.0 wifi: a cognitive federated learning approach. IEEE Trans. Ind. Inf. 17, 2143–2151 (2020)

    Google Scholar 

  31. Chung, J., Han, D., Kim, J., Kim, C.K.: Machine learning based path management for mobile devices over mptcp. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 206–209 (2017)

    Google Scholar 

  32. Beig, E.F.G.M., Daneshjoo, P., Rezaei, S., Movassagh, A.A., Karimi, R., Qin, Y.: Mptcp throughput enhancement by q-learning for mobile devices. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 1171–1176, (2018)

    Google Scholar 

  33. Chiariotti, F., Kucera, S., Zanella, A., Claussen, H.: Analysis and design of a latency control protocol for multi-path data delivery with pre-defined QoS guarantees. IEEE/ACM Trans. Networking 27, 1165–1178 (2019)

    Article  Google Scholar 

  34. Zhang, H., Li, W., Gao, S., Wang, X., Ye, B.: Reles: a neural adaptive multipath scheduler based on deep reinforcement learning. IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1648–1656 (2019)

    Google Scholar 

  35. Pokhrel, S.R., Williamson, C.: (2020)

    Google Scholar 

  36. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. Proceedings-IEEE INFOCOM (2006)

    Google Scholar 

  37. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Google Scholar 

  38. Pokhrel, S.R.: Federated learning meets blockchain at 6g edge: a drone-assisted networking for disaster response. Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, pp 49–54 (2020)

    Google Scholar 

  39. A decentralized federated learning approach for connected autonomous vehicles. 2020 IEEE Wireless Communications and Networking Conference Workshops, pp 1–6 (2020)

    Google Scholar 

  40. Improving TCP performance over wifi for internet of vehicles: a federated learning approach. IEEE Trans. Veh. Technol. 69, 6798–6802 (2020)

    Google Scholar 

  41. Turkovic, B., Kuipers, F.A., Uhlig S.

    Google Scholar 

  42. Zaghal, R.Y., Khan, J.I.: [Online] (2021). Available: http://www.medianet.kent.edu/technicalreports.html

  43. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP Selective Acknowledgment Options (1996)

    Google Scholar 

  44. Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control, vol. 5681, pp. 27–27. Available online (2021)

    Google Scholar 

  45. Floyd, S., Henderson, T., Gurtov, A.: pp. 27–27. [Online] (2021). Available: https://tools.ietf.org/html/rfc3782

  46. Xu, L., Harfoush, K., Rhee, I.: Binary INCREASE congestion Control (BIC) for Fast Long-Distance Networks. In: Proceedings of the IEEE INFOCOM, pp. 2514–2524 (2004)

    Google Scholar 

  47. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42, 64–74 (2008)

    Google Scholar 

  48. Brakmo, L.S., Malley, S.W., Peterson, L.L.: Vegas, new techniques for congestion detection and avoidance. In: Proceedings of the Conference on Communications Architectures, Protocols and Applications, pp. 24–35 (1994)

    Google Scholar 

  49. Wang, J., Wen, J., Zhang, J., Han, Y.: TCP-FIT: an improved TCP congestion control algorithm and its performance. In: Proceedings of the 2011 IEEE INFOCOM, pp. 2894–2902 (2011)

    Google Scholar 

  50. Hock, M., Neumeister, F., Zitterbart, M., Bless, R.: Lola, congestion control for low latencies and high throughput. In: Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pp. 215–218 (2017)

    Google Scholar 

  51. Mittal, R., Lam, V.T., Dukkipati, N., Blem, E., Wassel, H., Ghobadi, M., Vahdat, A., Wang, Y., Wetherall, D., Zats, D.: TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM Comput. Commun. Rev. 45, 537–550 (2015)

    Google Scholar 

  52. Fu, C.P., Liew, S.C.: Veno, TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Areas Commun. 21, 216–228 (2003)

    Google Scholar 

  53. Song, K.T.J., Zhang, Q., Sridharan, M.: Compound TCP: a scalable and TCP-friendly congestion control for high-speed networks. In: Proceedings of the PFLDnet (2006)

    Google Scholar 

  54. Kaneko, K., Fujikawa, T., Su, Z., Katto, J.: TCP-fusion: a hybrid congestion control algorithm for high-speed networks. In: Proceedings of the PFLDnet, vol. 7, pp. 31–36 (2007)

    Google Scholar 

  55. Liu, S., Başar, T., Srikant, R.: TCP-illinois: a loss-and delay-based congestion control algorithm for high-speed networks. Perform. Eval. 65, 417–440 (2008)

    Google Scholar 

  56. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. Commun. ACM 60, 58–66 (2017)

    Article  Google Scholar 

  57. Noda, K., Ito, Y., Muraki, Y.: Study on congestion control of multipath TCP based on web-QoE under heterogeneous environment. In: Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE), pp. 1–3 (2017)

    Google Scholar 

  58. Lubna, T., Mahmud, I., Cho, Y.-Z.D.-L.: pp. 263–268

    Google Scholar 

  59. Cao, Y., Xu, M., Fu, X.: Delay-based congestion control for multipath TCP. In: Proceedings of the 20th IEEE International Conference on Network Protocols (ICNP), pp. 1–10 (2012)

    Google Scholar 

  60. Tsiropoulou, E.E., Katsinis, G.K., Filios, A., Papavassiliou, S.: On the problem of optimal cell selection and uplink power control in open access multi-service two-tier femtocell networks. In: Proceedings of the International Conference on Ad-Hoc Networks and Wireless, pp. 114–127. Springer (2014)

    Google Scholar 

  61. Chao, L., Wu, C., Yoshinaga, T., Bao, W., Ji, Y.: A brief review of multipath TCP for vehicular networks. Sensors 21 (2021)

    Google Scholar 

  62. Lee, W., Lee, J.Y., Joo, H., Kim, H.: An MPTCP-based transmission scheme for improving the control stability of unmanned aerial vehicles. Sensors (2021)

    Google Scholar 

  63. DeepCC: Multi-agent deep reinforcement learning congestion control for multi-path TCP based on self-attention. IEEE Trans. Netw. Serv. Manag. (2021)

    Google Scholar 

  64. Wei, W., Xue, K., Han, J., Wei, D.S., Hong, P.: Shared bottleneck-based congestion control and packet scheduling for multipath TCP. IEEE/ACM Trans. Netw. 28, 653–666 (2020)

    Article  Google Scholar 

  65. Mudassir, M.U., Baig, M.: HCCA, pp. 711–711 (2021)

    Google Scholar 

  66. Chen, M., Liu, Y., Mao, S.: (2014)

    Google Scholar 

  67. Ahmed, E., Yaqoob, I., Hashem, I.A.T., Shuja, J., Imran, M., Guizani, N., Bakhsh, S.T.: Recent advances and challenges in mobile big data. IEEE Commun. Mag. 56, 102–108 (2018)

    Article  Google Scholar 

  68. Fang, H., Zhang, Z., Wang, C.J., Daneshmand, M., Wang, C., Wang, H.

    Google Scholar 

  69. A survey of big data research 29, 6–9 (2015)

    Google Scholar 

  70. Bansal, M., Chana, I., Clarke, S.: A survey on iot big data: current status, 13 v’s challenges, and future directions. ACM Comput. Surv. (CSUR) 53, 1–59 (2020)

    Article  Google Scholar 

  71. Yu, C., Quan, W., Cheng, N., Chen, S., Zhang, H.: Coupled or uncoupled? Multipath TCP congestion control for high-speed railway networks. 2019 IEEE/CIC International Conference on Communications in China (ICCC), pp. 612–617 (2019)

    Google Scholar 

  72. Raiciu, C., Wischik, D., Handley, M.: pp. 27–27. [Online] (2009). Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.376.3473&rep=rep1&type=pdf

  73. Paasch, C., Bonaventure, O.: Multipath TCP. Commun. ACM 57(4):51–57 (2014)

    Google Scholar 

  74. Floyd, S., Henderson, T., Gurtov, A.: The new Reno modification to TCP’s fast recovery algorithm. IETF RFC 3728 (2004)

    Google Scholar 

  75. Lim, Y., Chen, Y.C., Nahum, E.M., Towsley, D., Lee, K.W.: Cross-layer path management in multi-path transport protocol for mobile devices. IEEE INFOCOM 2014-IEEE Conference on Computer Communications, pp. 1815–1823 (2014)

    Google Scholar 

  76. Bae, S., Ban, D., Han, D., Kim, J., Lee, K., Lim, S., Park, W., Kim, C.K.: Streetsense: effect of bus wi-fi aps on pedestrian smartphone. Proceedings of the 2015 Internet Measurement Conference, pp. 347–353 (2015)

    Google Scholar 

  77. Scharf, M., Kiesel, S.: Nxg03-5: head-of-line blocking in TCP and SCTP: analysis and measurements. IEEE Globecom, pp. 1–5 (2006)

    Google Scholar 

  78. Wischik, D., et al.: NSDI'11: 8th USENIX Symposium on Networked Systems Design and Implementation (2011)

    Google Scholar 

  79. Kuhn, N., Lochin, E., Mifdaoui, A., Sarwar, G., Mehani, O., Boreli, R.: Daps: Intelligent delay-aware packet scheduling for multipath transport. In: 2014 IEEE International Conference on Communications (ICC), pp. 1222–1227 (2014)

    Google Scholar 

  80. Liu, Y., Neri, A., Ruggeri, A., Vegni, A.M.: A MPTCP-based network architecture for intelligent train control and traffic management operations. IEEE Trans. Intell. Transp. Syst. 18, 2290–2302 (2016)

    Article  Google Scholar 

  81. Pokhrel, S.R., Jin, J., Vu, H.L.: Mobility-aware multipath communication for unmanned aerial surveillance systems. IEEE Trans. Veh. Technol. 68, 6088–6098 (2019)

    Article  Google Scholar 

  82. Wu, H., Alay, Ö., Brunstrom, A., Ferlin, S., Caso, G.: Peekaboo: learning-based multipath scheduling for dynamic heterogeneous environments. IEEE J. Sel. Areas Commun. 38, 2295–2310 (2020)

    Article  Google Scholar 

  83. Ha, S., Rhee, I., Xu, L.: Cubic: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Syst. Rev. 42, 64–74 (2008)

    Article  Google Scholar 

  84. Dong, M., Li, Q., Zarchy, D., Godfrey, P.B., Schapira, M.: PCC: re-architecting congestion control for consistent high performance. In: Proceedings of the 12th USENIX symposium on networked systems design and implementation (NSDI 15), pp. 395–408 (2015)

    Google Scholar 

  85. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Industr. Inf. 14, 4724–4734 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Rupesh Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thakur, N.R., Kunte, A.S. (2023). Smart Congestion Control and Path Scheduling in MPTCP. In: Choudrie, J., Mahalle, P., Perumal, T., Joshi, A. (eds) IOT with Smart Systems. Smart Innovation, Systems and Technologies, vol 312. Springer, Singapore. https://doi.org/10.1007/978-981-19-3575-6_71

Download citation

Publish with us

Policies and ethics