Skip to main content

Moving Objects Detection in Video by Various Background Modelling Algorithms and Score Fusion

  • Conference paper
  • First Online:
Intelligent Decision Technologies

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 309))

  • 382 Accesses

Abstract

The paper presents results from testing ten of the fastest background modelling algorithms applied for detecting moving objects in video. The algorithms are Fast Principal Component Pursuit (Fast PCP), Grassmann Average (GA), Grassmann Median (GM), Go Decomposition (GoDec), Greedy Semi-Soft Go Decomposition (GreGoDec), Low-Rank Matrix Completion by Riemannian Optimization (LRGeomCG), Robust Orthonormal Subspace Learning (ROSL), Non-Negative Matrix Factorization via Nesterovs Optimal Gradient Method (NeNMF), Deep Semi Non-negative Matrix Factorization (Deep-Semi-NMF) and Tucker Decomposition by Alternating Least Squares (Tucker-ALS). Two new algorithms employing score fusion from Fast PCP and ROSL, which yielded alone the highest Detection Rate, Precision and F-measure, are proposed. The first algorithm has higher Detection Rate from all the others and the second—the highest Precision. Both are considered applicable in various practical scenarios when seeking either higher reliability of object detection or higher precision of the covered area by each object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaji, S.R., Karthikeyan, S.: A survey on moving object tracking using image processing. In: 2017 11th International Conference on Intelligent Systems and Control (ISCO), pp. 469–474. IEEE (2017)

    Google Scholar 

  2. Maggio, E., Cavallaro, A.: Video Tracking: Theory and Practice. Wiley (2011)

    Book  Google Scholar 

  3. Ojha, S., Sakhare, S.: Image processing techniques for object tracking in video surveillance—a survey. In: 2015 International conference on pervasive computing (ICPC), pp. 1–6. IEEE (2015)

    Google Scholar 

  4. Sommer, L.W., Teutsch, M., Schuchert, T., Beyerer, J.: A survey on moving object detection for wide area motion imagery. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)

    Google Scholar 

  5. Yazdi, M., Bouwmans, T.: New trends on moving object detection in video images captured by a moving camera: a survey. Comput. Sci. Rev. 28, 157–177 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bouwmans, T., Porikli, F., Höferlin, B., Vacavant, A. (eds.): Background Modeling and Foreground Detection for Video Surveillance. CRC Press (2014)

    Google Scholar 

  7. Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE ICCV, vol. 99, no. 1999, pp. 1–19. IEEE (1999)

    Google Scholar 

  8. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–43. IEEE (2012)

    Google Scholar 

  9. López-Rubio, F.J., López-Rubio, E.: Features for stochastic approximation based foreground detection. Comput. Vis. Image Underst. 133, 30–50 (2015)

    Article  Google Scholar 

  10. Chiranjeevi, P., Sengupta, S.: Rough-set-theoretic fuzzy cues-based object tracking under improved particle filter framework. IEEE Trans. Fuzzy Syst. 24(3), 695–707 (2015)

    Article  Google Scholar 

  11. Cao, W., Wang, Y., Sun, J., Meng, D., Yang, C., Cichocki, A., Xu, Z.: Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 25(9), 4075–4090 (2016)

    Article  MathSciNet  Google Scholar 

  12. Draganov, I.R., Mironov, R.P., Manolova, A.H., Neshov, N.N.: Fire dispersal estimation in videos using background modelling and subtraction by tensor decomposition. In: 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, pp. 656–661. IEEE (2019)

    Google Scholar 

  13. Comon, P., Luciani, X., De Almeida, A.L.: Tensor decompositions, alternating least squares and other tales. J. Chemometr. J. Chemometr. Soc. 23(7–8), 393–405 (2009)

    Article  Google Scholar 

  14. Draganov, I.R., Mironov, R.P., Neshov, N.N., Manolova, A.H.: Wild animals population estimation from thermographic videos using tensor decomposition. In: Proceedings of the 14th International Conference on Communications, Electromagnetics and Medical Applications (CEMA’19), pp. 52–57. KING 2001 (2019a)

    Google Scholar 

  15. Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Sig. Process. 60(6), 2882–2898 (2012)

    Article  MathSciNet  Google Scholar 

  16. Draganov, I., Mironov, R. (in press) Tracking of domestic animals in thermal videos by tensor decompositions. In: Proceedings of the International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP’2020). Springer

    Google Scholar 

  17. Andriyanov, N., Dementiev, V, Kondratiev, D.: Tracking of objects in video sequences. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies, vol. 238, pp. 253–262. Smart Innovation, Systems and Technologies. Springer, Singapore (2021)

    Google Scholar 

  18. Mao, H., Yang, X., Dally, W.J.: A delay metric for video object detection: what average precision fails to tell. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 573–582 (2019)

    Google Scholar 

  19. Lempitsky, V., Zisserman, A.: Learning to count objects in images. Advances in Neural Information Processing Systems, 23 (2010)

    Google Scholar 

  20. Rodriguez, P., Wohlberg, B.: Fast principal component pursuit via alternating minimization. In: 2013 IEEE International Conference on Image Processing, pp. 69–73. IEEE (2013)

    Google Scholar 

  21. Hauberg, S., Feragen, A., Black, M.J.: Grassmann averages for scalable robust PCA. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition¸ pp. 3810–3817. IEEE (2014)

    Google Scholar 

  22. Zhou, T., Tao, D.: Godec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 33–40 (2011)

    Google Scholar 

  23. Zhou, T., Tao, D.: Greedy bilateral sketch, completion & smoothing. J. Mach. Learn. Res. 31, 650–658 (2013)

    Google Scholar 

  24. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2), 1214–1236 (2013)

    Article  MathSciNet  Google Scholar 

  25. Xianbiao, S., Fatih, P., Narendra, A.: Robust orthonormal subspace learning: efficient recovery of corrupted low-rank matrices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3874–3881. IEEE (2014)

    Google Scholar 

  26. Trigeorgis, G., Bousmalis, K., Zafeiriou, S., Schuller, B.: A deep semi-NMF model for learning hidden representations. In: International Conference on Machine Learning, pp. 1692–1700 (2014)

    Google Scholar 

  27. Sobral, A., Bouwmans, T., Zahzah, E.H.: Lrslibrary: low-rank and sparse tools for background modeling and subtraction in videos. In: Bouwmans, T., Aybat, N., Zahzah, E.-H. (eds.) Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing. CRC Press (2016)

    Google Scholar 

  28. Cuevas, C., Yáñez, E.M., García, N.: Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput. Vis. Image Understand. 152, 103–117 (2016)

    Article  Google Scholar 

  29. Guyon, C., Bouwmans, T., Zahzah, E.H.: Robust principal component analysis for background subtraction: systematic evaluation and comparative analysis. Principal Compon. Anal. 10, 223–238 (2012)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Fund of Bulgaria [grant number KP-06-H27/16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Draganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Draganov, I., Mironov, R. (2022). Moving Objects Detection in Video by Various Background Modelling Algorithms and Score Fusion. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 309. Springer, Singapore. https://doi.org/10.1007/978-981-19-3444-5_30

Download citation

Publish with us

Policies and ethics