Skip to main content

Fundamentals of Lithium-Ion Containing Glassy Systems

  • Chapter
  • First Online:
Lithium Ion Glassy Electrolytes

Abstract

An increasing interest in amorphous solids has grown not only due to their various technological applications in electronic, electrochemical, magnetic, and optical devices, but also from the point of view of their complexity in structure. Glasses are formed as an amorphous (non-crystalline) solid having short-range order; i.e., there is no periodic arrangement of its molecular constituents. The most important aspect of glass transition is the relaxation process that occurs as the supercooled liquid cools. The configurational changes cause the relaxation of the supercooled liquid and become increasingly slow with decreasing temperature, until at a given temperature (glass transition temperature) the material behaves as a solid. Various structural investigations such as SEM, TEM, XRD, FTIR, and FESEM and optical study such as UV–visible have been carried out on different types of glass nanocomposites to explore their various properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.R. Elliot, Physics of Amorphous Materials (England Longman Group Ltd., 1984)

    Google Scholar 

  2. D. Turnbull, Contemp. Phys. 10, 473 (1969)

    Article  ADS  Google Scholar 

  3. A.E. Owen, Contemp. Phys. 11, 227 (1970)

    Article  ADS  Google Scholar 

  4. J.D. Mackenzie, General aspects of the vitreous state, in Modern Aspects of the Vitreous State, ed. by J.D. Mackenzie (Butterworth & Co. Publishers Ltd, London, 1960)

    Google Scholar 

  5. B. Karmakar, K. Rademann, A. Stepanov, Glass Nanocomposites: Synthesis, Properties and Applications (Elsevier B.V., Amsterdam, 2016), ch. 1, pp. 3–53

    Google Scholar 

  6. W.H. Dumbaugh, Corning Glass Works (Corning, New York, 1985), p. 14831

    Google Scholar 

  7. A.C. Wright, Experimental Techniques of Glass Science (The American Ceramic Society, Westerville, 1993)

    Google Scholar 

  8. B.G. Bagley, Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum, London, 1974)

    Google Scholar 

  9. S.S. Flaschen, A.D. Pearson, W.R. Northover, J. Am. Ceram. Soc. 42, 450 (1959)

    Article  Google Scholar 

  10. S. Bhattacharya, A. Ghosh, J. Appl. Phys. 100, 114119 (2006)

    Article  ADS  Google Scholar 

  11. S. Bhattacharya, A. Ghosh, J. Phys. Condens. Matter 17, 5655 (2005)

    Article  ADS  Google Scholar 

  12. B. Deb, S. Bhattacharya, A. Ghosh, Europhys. Lett. 96, 37005 (2011)

    Article  ADS  Google Scholar 

  13. A.K. Bar, K. Bhattacharya, R. Kundu, D. Roy, S. Bhattacharya, Mater. Chem. Phys. 199, 322 (2017)

    Article  Google Scholar 

  14. S. Bhattacharya, A. Ghosh, Adv. Sci. Lett. 2, 55 (2009)

    Article  Google Scholar 

  15. S. Bhattacharya, A. Acharya, D. Biswas, A.S. Das, L.S. Singh, Phys. B 546, 10 (2018)

    Article  ADS  Google Scholar 

  16. S. Bhattacharya, A. Ghosh, J. Chem. Phys. 127, 194709–194716 (2007)

    Article  ADS  Google Scholar 

  17. S. Bhattacharya, A. Acharya, A.S. Das, K. Bhattacharya, C.K. Ghosh, J. Alloy. Compd. 786, 707–716 (2019)

    Article  Google Scholar 

  18. S. Bhattacharya, A.K. Bar, D. Roy, J. Adv. Phys. 2, 241–244 (2013)

    Article  Google Scholar 

  19. A. Acharya, K. Bhattacharya, C.K. Ghosh, S. Bhattacharya, Mater. Lett. 265, 127438–127444 (2020)

    Article  Google Scholar 

  20. A. Acharya, K. Bhattacharya, C.K. Ghosh, A.N. Biswas, K. Bhattacharya, Mater. Sci. Eng. B 260, 114612–114614 (2020)

    Article  Google Scholar 

  21. P. Pal, A. Ghosh, J. Appl. Phys. 120, 045108 (2016)

    Article  ADS  Google Scholar 

  22. K. Takada, J. Power Sources 394, 74 (2018)

    Article  ADS  Google Scholar 

  23. H. Pan, S. Zhang, J. Chen, M. Gao, Y. Liu, T. Zhu, Y. Jiang, Mol. Syst. Des. Eng. 3, 748 (2018)

    Article  Google Scholar 

  24. F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, J. Power Sources 389, 198 (2018)

    Article  ADS  Google Scholar 

  25. X. Yao, B. Huang, J. Yin, G. Peng, Z. Huang, C. Gao, D. Liu, X. Xu, Chin. Phys. B 25, 018802 (2016)

    Article  ADS  Google Scholar 

  26. E. Zanotto, Am. Ceram. Soc. Bull. 89, 19 (2010)

    Google Scholar 

  27. V. Prasad, L. Pavić, A. Moguš-Milanković, A. Siva Sesha Reddy, Y. Gandhi, V. Ravi Kumar, G. Naga Raju, N. Veeraiah, J. Alloys Compd. 773, 654 (2019)

    Google Scholar 

  28. H. Seo, H. Kim, K. Kim, H. Choi, J. Kim, J. Alloys Compd. 782, 525 (2019)

    Article  Google Scholar 

  29. K. Takada, T. Ohno, N. Ohta, T. Ohnishi, Y. Tanaka, ACS Energy Lett. 3, 98 (2018)

    Article  Google Scholar 

  30. J. Sánchez-González, A. Macías-García, M.F. Alexandre Franco, V. Gómez-Serrano, Carbon 43, 741 (2005)

    Google Scholar 

  31. M.M. El-Desoky, M.M. Mostafa, M.S. Ayoub, M.A. Ahmed, J. Mater. Sci. Mater. Electron. 26, 6793 (2015)

    Article  Google Scholar 

  32. A.E. Harby, A.E. Hannora, M.S. Al-Assiri, M.M. El-Desoky, J. Mater. Sci. Mater. Electron. 27, 8446 (2016)

    Article  Google Scholar 

  33. D.P. Almond, G.K. Duncan, A.R. West, Solid State Ion. 8, 159 (1983)

    Article  Google Scholar 

  34. S. Bhattacharya, A. Ghosh, J. Phys. Chem. C 114(114), 5745 (2010)

    Article  Google Scholar 

  35. Z. Wei, D. Wang, X. Yang, C. Wang, G. Chen, F. Du, Adv. Mater. Interfaces 5, 1800639 (2018)

    Article  Google Scholar 

  36. D.P. Almond, A.R. West, Solid State Ion. 9–10, 277 (1983)

    Article  Google Scholar 

  37. X. Yao, B. Huang, J. Yin, G. Peng, Z. Huang, C. Gao, D. Liu, X. Xu, Chin. Phys. B 25, 018802 (2015)

    Google Scholar 

  38. E.M. Assim, E.G. El-Metwally, J. Non-Cryst. Solids 566, 120892 (2021)

    Article  Google Scholar 

  39. S. Bhattacharya, Phys. Lett. A 384, 126324 (2020)

    Article  Google Scholar 

  40. D.P. Almond, A.R. West, Nature 306, 456 (1983)

    Google Scholar 

  41. A. Pradel, C. Rau, D. Bittencourt, P. Armand, E. Philippot, M. Ribes, Chem. Mater. 10, 2162 (1998)

    Article  Google Scholar 

  42. V. Deshpande, A. Pradel, M. Ribes, Mater. Res. Bull. 23, 379 (1988)

    Article  Google Scholar 

  43. A. Pradel, M. Ribes, Mater. Chem. Phys. 23, 121 (1989)

    Article  Google Scholar 

  44. H. Eckert, Z. Zhang, J. Kennedy, J. Non-Cryst. Solids 107, 271 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acharya, A., Ghosh, C.K., Bhattacharya, S. (2022). Fundamentals of Lithium-Ion Containing Glassy Systems. In: Bhattacharya, S., Bhattacharya, K. (eds) Lithium Ion Glassy Electrolytes. Springer, Singapore. https://doi.org/10.1007/978-981-19-3269-4_1

Download citation

Publish with us

Policies and ethics