Skip to main content

Abstract

Water scarcity is a major issue in some part of the world today. In some countries, seawater desalination through membrane distillation (MD) technology has been used to overcome the issue. However, there are two major issues impeding the efficiency of MD process, namely vapour flux declination and membrane wetting. Recently, electrospun fibres have been proposed as an alternative approach in developing new membrane modules for MD process. In this regard, polyacrylonitrile (PAN) in the form of electrospun fibres is a popular choice due to its relative superiority characteristics such as hydrophobic surface, nanoscale fibre diameter, low thermal conductivity, and possessed strong mechanical strength. However, it is dependent on the fabrication technique, which has a significant impact on the characteristics of the final products. Electrospinning is the most efficient technique in the production of polymeric electrospun fibres using electric charges. Although electrospinning can often be seen as a straightforward process, it consists of several complex processing parameters that need to be optimised in order to get high-quality fibre membranes. In this review, a brief overview is presented on the electrospinning of PAN electrospun fibres, as well as the range of optimum processing parameters. This review also focuses on the characteristics of PAN electrospun fibres and recent fabrication methods in developing high-performance membrane modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Vliet, M.T.H., et al.: Global water scarcity including surface water quality and expansions of clean water technologies Environ. Res. Lett. 16, 024020 (2021)

    Article  Google Scholar 

  2. Kugarajah, V., et al.: Future applications of electrospun nanofibers in pressure driven water treatment: a brief review and research update. J. Environ. Chem. Eng. 9, 105107 (2021)

    Article  Google Scholar 

  3. Pistocchi, A., et al.: Can seawater desalination be a win-win fix to our water cycle? Water Res. 182, 115906 (2020)

    Article  Google Scholar 

  4. Roy, S., Humoud, M.S., Intrchom, W., Mitra, S.: Microwave-induced desalination via direct contact membrane distillation. ACS Sustain. Chem. Eng. 6(1), 626–632 (2018)

    Article  Google Scholar 

  5. Curto, D., Franzitta, V., Guercio, A.: A review of the water desalination technologies. Appl. Sci. 11, 1–36 (2021)

    Article  Google Scholar 

  6. Muhamad, N.A.S., Mokhtar, N.M., Naim, R., Lau, W.J., Ismail, A.F.: A review of membrane distillation process: - before, during and after testing. Int. J. Eng. Technol. Sci. 6, 62–81 (2019)

    Article  Google Scholar 

  7. Damtie, M.M., Kim, B., Woo, Y.C., Choi, J.S.: Membrane distillation for industrial wastewater treatment: studying the effects of membrane parameters on the wetting performance. Chemosphere 206, 793–801 (2018)

    Article  Google Scholar 

  8. Deshmukh, A., et al.: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11(5), 1177–1196 (2018)

    Article  MathSciNet  Google Scholar 

  9. Warsinger, D.M., et al.: Reversing membrane wetting in membrane distillation: comparing dryout to backwashing with pressurized air. Environ. Sci. Water Res. Technol. 3, 930–939 (2017)

    Article  Google Scholar 

  10. Rezaei, M., Warsinger, D.M., Duke, M.C., Matsuura, T., Samhaber, W.M.: Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Res. 139, 329–352 (2018)

    Article  Google Scholar 

  11. Zhu, Z., et al.: Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. J. Memb. Sci. 620, 118768 (2021)

    Article  Google Scholar 

  12. Zhang, R., Tang, W., Gao, H., Wu, C., Gray, S., Lu, X.: In-situ construction of superhydrophobic PVDF membrane via NaCl-H2O induced polymer incipient gelation for membrane distillation. Sep. Purif. Technol. 274, 117762 (2021)

    Article  Google Scholar 

  13. Ahmadi, Z., Ravandi, S.A.H., Haghighat, F., Dabirian, F.: Enhancement of the mechanical properties of PAN nanofiber/carbon nanotube composite mats produced via needleless electrospinning system. Fibers Polym. 21(6), 1200–1211 (2020)

    Article  Google Scholar 

  14. Wu, H., Shen, F., Su, Y., Chen, X., Wan, Y.: Modification of polyacrylonitrile membranes via plasma treatment followed by polydimethylsiloxane coating for recovery of ethyl acetate from aqueous solution through vacuum membrane distillation. Sep. Purif. Technol. 197, 178–188 (2018)

    Article  Google Scholar 

  15. Seo, D.H., et al.: Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 9(1), 1–12 (2018)

    Article  Google Scholar 

  16. Fang, J., Wang, H., Wang, X., Lin, T.: Superhydrophobic nanofibre membranes: effects of particulate coating on hydrophobicity and surface properties. J. Text. Inst. 103, 937–944 (2012)

    Article  Google Scholar 

  17. Liu, L., et al.: A novel plasma-induced surface hydrophobization strategy for membrane distillation: etching, dipping and grafting. J. Memb. Sci. 499, 544–554 (2016)

    Article  Google Scholar 

  18. Ebrahimi, F., Orooji, Y., Razmjou, A.: Applying membrane distillation for the recovery of nitrate from saline water using pvdf membranes modified as superhydrophobic membranes. Polymers 12(12), 2774 (2020)

    Article  Google Scholar 

  19. Lee, J., Yoon, J., Kim, J.H., Lee, T., Byun, H.: Electrospun PAN–GO composite nanofibers as water purification membranes. J. Appl. Polym. Sci. 135, 1–9 (2018)

    Article  Google Scholar 

  20. Tijing, L.D., Woo, Y.C., Johir, M.A.H., Choi, J.S., Shon, H.K.: A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation. Chem. Eng. J. 256, 155–159 (2014)

    Article  Google Scholar 

  21. Bortolassi, A.C.C., et al.: Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C 102, 718–729 (2019)

    Article  Google Scholar 

  22. Meyva-Zeybek, Y., Kaynak, C.: Electrospinning of PLA and PLA/POSS nanofibers: use of Taguchi optimization for process parameters. J. Appl. Polym. Sci. 138, 1–11 (2021)

    Article  Google Scholar 

  23. Essalhi, M., Khayet, M., Tesfalidet, S., Alsultan, M., Tavajohi, N.: Desalination by direct contact membrane distillation using mixed matrix electrospun nanofibrous membranes with carbon-based nanofillers: a strategic improvement. Chem. Eng. J. 426, 131316 (2021)

    Article  Google Scholar 

  24. Roslan, N.S.A., Hamid, N.A., Mohamed Hafiz, M., Isa, N.M., Mansor, M.R., Munajat, N.A.: Nylon electrospun nanofibre water filtration media for wastewater treatment. Mater. Res. Exp. 5(10), 105010 (2018)

    Article  Google Scholar 

  25. Nonato, R.C., Morales, A.R., Rocha, M.C., Nista, S.V.G., Mei, L.H.I., Bonse, B.C.: Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning. Appl. Phys. A Mater. Sci. Process. 123, 1–8 (2017)

    Article  Google Scholar 

  26. Su, Z., Ding, J., Wei, G.: Electrospinning: a facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv. 4, 52598–52610 (2014)

    Article  Google Scholar 

  27. Haider, A., Haider, S., Kang, I.K.: A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11, 1165–1188 (2018)

    Article  Google Scholar 

  28. Zhu, Z., et al.: Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. J. Memb. Sci. 620, 118768 (2020)

    Article  Google Scholar 

  29. An, A.K., Lee, E.J., Guo, J., Jeong, S., Lee, J.G., Ghaffour, N.: Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  30. Wang, T., Kumar, S.: Electrospinning of polyacrylonitrile nanofibers. J. Appl. Polym. Sci. 102, 1023–1029 (2006)

    Article  Google Scholar 

  31. Li, Z., Wang, C.: Effects of working parameters on electrospinning. In: Li, Z., Wang, C. (eds.) One-Dimensional Nanostructures, pp. 15–28. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36427-3_2

    Chapter  Google Scholar 

  32. Rivero, P.J., Redin, D.M., Rodríguez, R.J.: Electrospinning: a powerful tool to improve the corrosion resistance of metallic surfaces using nanofibrous coatings. Metals 10(3), 350 (2020)

    Article  Google Scholar 

  33. Stachewicz, U., Dijksman, J.F., Soudani, C., Tunnicliffe, L.B., Busfield, J.J.C., Barber, A.H.: Surface free energy analysis of electrospun fibers based on rayleigh-plateau/weber instabilities. Eur. Polym. J. 91, 368–375 (2017)

    Article  Google Scholar 

  34. Islam, M.S., Ang, B.C., Andriyana, A., Afifi, A.M.: A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 1, 1–16 (2019)

    Article  Google Scholar 

  35. Shi, X., et al.: Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. (2015)

    Google Scholar 

  36. Can-Herrera, L.A., Oliva, A.I., Dzul-Cervantes, M.A.A., Pacheco-Salazar, O.F., Cervantes-Uc, J.M.: Morphological and mechanical properties of electrospun polycaprolactone scaffolds: effect of applied voltage. Polymers 13, 1–16 (2021)

    Article  Google Scholar 

  37. Aman, M.M., Hosseini, S.M., Yousefi, M.: Application of electrospinning technique in development of intelligent food packaging: a short review of recent trends. Food Sci. Nutr. 8, 4656–4665 (2020)

    Article  Google Scholar 

  38. Levitt, A.S., Vallett, R., Dion, G., Schauer, C.L.: Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. J. Appl. Polym. Sci. 135, 1–9 (2018)

    Article  Google Scholar 

  39. Matabola, K.P., Moutloali, R.M.: The influence of electrospinning parameters on the morphology and diameter of poly (vinyledene fluoride) nanofibers-effect of sodium chloride. J. Mater. Sci. 48, 5475–5482 (2013)

    Article  Google Scholar 

  40. Hekmati, A.H., Rashidi, A., Ghazisaeidi, R., Drean, J.Y.: Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs. Text. Res. J. 83, 1452–1466 (2013)

    Article  Google Scholar 

  41. Nurfaizey, A.H., Munajat, N.A.: Effect of electrospinning distance and applied voltage on the production of polyacrylonitrile electrospun fibres, pp. 94–96 (2020)

    Google Scholar 

  42. Lamura, M.D.P., Pulungan, M.A., Jauhari, J., Sriyanti, I.: The influence of control parameter on the morphology polyethersulfone/polyacrylonitrile (PES/PAN) fiber using electrospinning technique. IOP Conf. Ser. Earth Environ. Sci. 1796, 012084 (2021)

    Google Scholar 

  43. Long, F., Kamsom, R., Nurfaizey, A.H., Isa, M.H.M., Masripan, N.A.: The influence of electrospinning distances on fibre diameter of poly (vinyl alcohol) electrospun nanofibers. In: Proceedings of Mechanical Engineering Research Day, pp. 377–378. Centre for Advanced Research on Energy (2017)

    Google Scholar 

  44. Yuan, X.Y., Zhang, Y.Y., Dong, C., Sheng, J.: Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym. Int. 53, 1704–1710 (2004)

    Article  Google Scholar 

  45. Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A.S., Damerchely, R.: The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J. Eng. Fiber. Fabr. 7, 42–49 (2012)

    Google Scholar 

  46. Tang, X.P., Si, N., Xu, L., Liu, H.Y.: Effect of flow rate on diameter of electrospun nanoporous fibers. Therm. Sci. 18, 1447–1449 (2014)

    Article  Google Scholar 

  47. Zhang, C., Yuan, X., Wu, L., Han, Y., Sheng, J.: Study on morphology of electrospun poly (vinyl alcohol) mats. Eur. Polym. J. 41, 423–432 (2005)

    Article  Google Scholar 

  48. Rafizadeh, M., Fallahi, D., Mohammadi, N., Vahidi, B.: Effects of feed rate and solution conductivity on jet current and fiber diameter in electrospinning of polyacrylonitrile solutions. E-Polymers (2009)

    Google Scholar 

  49. Veeramuthu, L., et al.: Conjugated copolymers through electrospinning synthetic strategies and their versatile applications in sensing environmental toxicants, pH, temperature, and humidity. Polymers 12, 1–28 (2020)

    Google Scholar 

  50. Barua, B., Mrinal, C.S.: Influence of humidity, temperature, and annealing on microstructure and tensile properties of electrospun polyacrylonitrile nanofibers. Polym. Eng. Sci. 1–10 (2017)

    Google Scholar 

  51. Szewczyk, P.K., Stachewicz, U.: The impact of relative humidity on electrospun polymer fibers: from structural changes to fiber morphology. Adv. Colloid Interface Sci. 286, 102315 (2020)

    Article  Google Scholar 

  52. Nezarati, R.M., Eifert, M.B., Cosgriff-Hernandez, E.: Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng. Part C: Methods 19(10), 810–819 (2013)

    Article  Google Scholar 

  53. Yang, G.Z., Li, H.P., Yang, J.H., Wan, J., Yu, D.G.: Influence of working temperature on the formation of electrospun polymer nanofibers. Nanoscale Res. Lett. 12(1), 1–10 (2017)

    Article  Google Scholar 

  54. Ahire, J.J., Neveling, D.P., Dicks, L.M.T.: Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti-Escherichia coli membrane for water treatment. Appl. Microbiol. Biotechnol. 102, 7171–7181 (2018)

    Article  Google Scholar 

  55. Niu, Z., Bian, Y., Xia, T., Zhang, L., Chen, C.: An optimization approach for fabricating electrospun nanofiber air filters with minimized pressure drop for indoor PM2.5 control. Build. Environ. 188, 107449 (2021)

    Article  Google Scholar 

  56. Kusuma, N.C., et al.: Fabrication and characterization of modified PVDF hollow fiber membrane coated with hydrophobic surface modifying macromolecules for desalination application. J. Environ. Chem. Eng. 9, 105582 (2021)

    Article  Google Scholar 

  57. Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner, A., Agarwal, S.: Electrospun nanofiber reinforced composites: a review. Polym. Chem. 9, 2685–2720 (2018)

    Article  Google Scholar 

  58. Ma, H., Hsiao, B.S.: Electrospun nanofibrous membranes for desalination. Elsevier Inc. (2018)

    Google Scholar 

  59. Roche, R., Yalcinkaya, F.: Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. ChemistryOpen 8, 97–103 (2019)

    Article  Google Scholar 

  60. Seyed Shahabadi, S.M., Rabiee, H., Seyedi, S.M., Mokhtare, A., Brant, J.A.: Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation. J. Memb. Sci. 537, 140–150 (2017)

    Article  Google Scholar 

  61. Eykens, L., De Sitter, K., Dotremont, C., Pinoy, L., Van der Bruggen, B.: Membrane synthesis for membrane distillation: a review. Sep. Purif. Technol. 182, 36–51 (2017)

    Article  Google Scholar 

  62. Uddin, M.N., Desai, F.J., Rahman, M.M., Asmatulu, R.: A highly efficient fog harvester of electrospun permanent superhydrophobic-hydrophilic polymer nanocomposite fiber mats. Nanoscale Adv. 2(10), 4627–4638 (2020)

    Article  Google Scholar 

  63. Haider, M.K., et al.: Fabricating antibacterial and antioxidant electrospun hydrophilic polyacrylonitrile nanofibers loaded with agnps by lignin-induced in-situ method. Polymers 13, 1–20 (2021)

    Article  Google Scholar 

  64. Yu, Y., et al.: Waterproof and breathable polyacrylonitrile/(polyurethane/fluorinated-silica) composite nanofiber membrane via side-by-side electrospinning. J. Mater. Res. 35(9), 1173–1181 (2020)

    Article  Google Scholar 

  65. Dong, S., et al.: Superhydrophobic alumina hollow ceramic membrane modified by TiO2 nanorod array for vacuum membrane distillation. J. Taiwan Inst. Chem. Eng. 117, 2–8 (2020)

    Article  Google Scholar 

  66. Szewczyk, P.K., et al.: Roughness and fiber fraction dominated wetting of electrospun fiber-based porous meshes. Polymers 11, 34 (2018)

    Article  Google Scholar 

  67. Heshmati, M.R., Amiri, S., Hosseini-Zori, M.: Synthesis and characterization of superhydrophobic-superoleophobic and anti-corrosion coatings via sol-gel process open. J. Org. Polym. Mater. 10, 1–15 (2020)

    Google Scholar 

  68. Li, S., Huang, J., Chen, Z., Chen, G., Lai, Y.: A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A 5, 31–55 (2017)

    Article  Google Scholar 

  69. My, N.T.T., Nhi, V.T.Y., Thanh, B.X.: Factors affecting membrane distillation process for seawater desalination. J. Appl. Membr. Sci. Technol. 22(1) (2018)

    Google Scholar 

  70. Gu, S., Cai, R., Yan, Y.: Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun. 47, 2856–2858 (2011)

    Article  Google Scholar 

  71. Khayyam, H., et al.: PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling. Prog. Mater. Sci. 107, 100575 (2020)

    Article  Google Scholar 

  72. Li, W., Yang, Z., Meng, Q., Shen, C., Zhang, G.: Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method. J. Memb. Sci. 467, 253–261 (2014)

    Article  Google Scholar 

  73. Furushima, Y., Nakada, M., Takahashi, H., Ishikiriyama, K.: Study of melting and crystallization behavior of polyacrylonitrile using ultrafast differential scanning calorimetry. Polymer 55, 3075–3081 (2014)

    Article  Google Scholar 

  74. Szepcsik, B., Pukánszky, B.: The mechanism of thermal stabilization of polyacrylonitrile. Thermochim. Acta 671, 200–208 (2019)

    Article  Google Scholar 

  75. Munajat, N.A., Nurfaizey, A.H., Bahar, A.A.M., You, K.Y., Fadzullah, S.H.S.M., Omar, G.: High-frequency dielectric analysis of carbon nanofibers from pan precursor at different pyrolysis temperatures. Microw. Opt. Technol. Lett. 60, 2198–2204 (2018)

    Article  Google Scholar 

  76. Hamadneh, N.N., Khan, W.S., Khan, W.A.: Prediction of thermal conductivities of polyacrylonitrile electrospun nanocomposite fibers using artificial neural network and prey predator algorithm. J. King Saud Univ. Sci. 31, 618–627 (2019)

    Article  Google Scholar 

  77. Luo, A., Lior, N.: Study of advancement to higher temperature membrane distillation. Desalination 419, 88–100 (2017)

    Article  Google Scholar 

  78. Arifeen, W.U., Kim, M., Choi, J., Yoo, K., Kurniawan, R., Ko, T.J.: Optimization of porosity and tensile strength of electrospun polyacrylonitrile nanofibrous membranes. Mater. Chem. Phys. 229, 310–318 (2019)

    Article  Google Scholar 

  79. Arif, M.W.A., Nurfaizey, A.H., Mustafa, Z., Nadlene, R., Jaafar, J., Tucker, N.: Investigation on fibre diameter, wettability and tensile behaviour of electrospun polyacrylonitrile nanofibres. Int. J. Nanoelectron. Mater. 14, 213–224 (2021)

    Google Scholar 

  80. Liang, W., et al.: Hydrophobic polyacrylonitrile membrane preparation and its use in membrane contactor for CO2 absorption. J. Memb. Sci. 569, 157–165 (2019)

    Article  Google Scholar 

  81. Yalcinkaya, F.: A review on advanced nanofiber technology for membrane distillation. J. Eng. Fiber. Fabr. 14 (2019)

    Google Scholar 

  82. Liao, Y., Zheng, G., Huang, J.J., Tian, M., Wang, R.: Development of robust and superhydrophobic membranes to mitigate membrane scaling and fouling in membrane distillation. J. Memb. Sci. 601, 117962 (2020)

    Article  Google Scholar 

  83. Nthunya, L.N., et al.: A review of nanoparticle-enhanced membrane distillation membranes: membrane synthesis and applications in water treatment. J. Chem. Technol. Biotechnol. 94, 2757–2771 (2019)

    Article  Google Scholar 

  84. Cai, J., Liu, Z., Guo, F.: Transport analysis of anti-wetting composite fibrous membranes for membrane distillation. Membranes 11, 1–14 (2021)

    Google Scholar 

  85. Chen, X.: Recent progress of membrane distillation technology applied in desalination. In: E3S Web Conference, vol. 131 (2019)

    Google Scholar 

  86. Efome, J.E., Rana, D., Matsuura, T., Yang, F., Cong, Y., Lan, C.Q.: Triple-layered nanofibrous metal-organic framework-based membranes for desalination by direct contact membrane distillation. ACS Sustain. Chem. Eng. 8, 6601–6610 (2020)

    Article  Google Scholar 

  87. Li, X., et al.: A novel profiled core-shell nanofibrous membrane for wastewater treatment by direct contact membrane distillation. J. Mater. Chem. A 4, 14453–14463 (2016)

    Article  Google Scholar 

  88. Qin, D., Zhang, R., Cao, B., Li, P.: Fabrication of high-performance composite membranes based on hierarchically structured electrospun nanofiber substrates for pervaporation desalination. J. Memb. Sci. 638, 119672 (2021)

    Article  Google Scholar 

  89. Tang, M., Hou, D., Ding, C., Wang, K., Wang, D., Wang, J.: Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance. Sci. Total Environ. 696, 133883 (2019)

    Article  Google Scholar 

  90. Cai, J., Liu, X., Zhao, Y., Guo, F.: Membrane desalination using surface fluorination treated electrospun polyacrylonitrile membranes with nonwoven structure and quasi-parallel fibrous structure. Desalination 429, 70–75 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education Malaysia and Universiti Teknikal Malaysia Melaka through the funding of Collaborative Research Grant PJP/2019/FKM-CARE/CRG/S01706. Special thanks to the members of Advanced Materials Characterization Laboratory (UTeM), Academia-Industry Collaboration Laboratory, and the members of the Faculty of Mechanical Engineering, UTeM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Nurfaizey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arif, M.W.A., Nurfaizey, A.H., Rosli, M.A.M., Mansor, M.R., Salim, M.A., Masripan, N.A. (2022). A Review on Polyacrylonitrile Electrospun Fibres and Their Applications in Membrane Distillation Technology. In: Abdollah, M.F.B., Amiruddin, H., Phuman Singh, A.S., Abdul Munir, F., Ibrahim, A. (eds) Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia. ICE-SEAM 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-3179-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3179-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3178-9

  • Online ISBN: 978-981-19-3179-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics