Skip to main content

Quantum Dot: A Boon for Biological and Biomedical Research

  • Chapter
  • First Online:
Application of Quantum Dots in Biology and Medicine
  • 340 Accesses

Abstract

Quantum dots (QDs) are mostly semiconductor nanocrystals, having properties in between bulk semiconductors and discrete atoms or molecules. Quantum dots can be synthesised using several methods from colloidal synthesis to chemical vapor deposition, for QDs synthesis, but the cheapest and the convenient method is benchtop colloidal synthesis. Due to exceptional optical and chemical behavior, QDs are broadly used in different areas, including light-emitting diodes, laser technology and solar cells, as well as in the biological and biomedical fields. This chapter provides the brief idea about QDs, including their synthetic approaches, biological relevance, and potentials in clinical applications like bio-imaging (cancer cell imaging), and targeted molecular therapy (drug delivery), as well as the leftover issues and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

ACE:

Angiotensin I-converting enzyme

BSA:

Bovine serum albumin

CPPs:

Cell-penetrating peptide

DDS:

Drug delivery system

DOX:

Doxorubicin

EPR:

Enhanced permeability retention

GFP:

Green-fluorescent protein

MUA:

11-Mercaptoundecanoic acid

NIR:

Near infrared

NPs:

Nanoparticles

OSCC:

Oral squamous cell carcinoma

PAR1:

Protease-activated receptor1

PC3:

Prostate cancer cells

PEG:

Polyethylene glycol

PL:

Photoluminescence

QDs:

Quantum dots

QY:

Quantum yield

SLNs:

Sentinel lymph nodes

UV:

Ultraviolet

VCAM-1:

Vascular cell adhesion molecule 1

VEGFR2:

Vascular endothelial growth factor receptor 2

References

  1. Zhang Y, Wei Q. The role of nanomaterials in electroanalytical biosensors: a mini review. J Electroanal Chem. 2016;781:401–9. https://doi.org/10.1016/j.jelechem.2016.09.011.

    Article  CAS  Google Scholar 

  2. Jin Y, Kannan S, Wu M, Zhao JX. Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol. 2007;20:1126–33. https://doi.org/10.1021/tx7001959.

    Article  CAS  Google Scholar 

  3. Lillemose M, Gammelgaard L, Richter J, Thomsen EV, Boisen A. Epoxy based photoresist/carbon nanoparticle composites. Compos Sci Technol. 2008;68(7):1831–6. https://doi.org/10.1016/j.compscitech.2008.01.017.

    Article  CAS  Google Scholar 

  4. Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C. Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater. 2007;311(1):10–6. https://doi.org/10.1016/j.jmmm.2006.11.157.

    Article  CAS  Google Scholar 

  5. Rogach AL, Eychmüller A, Hickey SG, Kershaw SV. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small. 2007;3(4):536–57. http://doi.org/10.1002/smll.200600625.

  6. Alivisator AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–7. https://doi.org/10.1126/science.271.5251.933.

    Article  Google Scholar 

  7. Nair PS, Fritz KP, Scholes GD. Evolutionary shape control during colloidal quantum-dot growth. Small. 2007;3:481–7. https://doi.org/10.1002/smll.200600558.

    Article  CAS  Google Scholar 

  8. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5:763–75. https://doi.org/10.1038/nmeth.1248.

    Article  CAS  Google Scholar 

  9. Chen LD, Liu J, Yu X, He M, Pei X, Tang Z, Wang Q, Pang D, Li Y. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials. 2008;29(31):4170–6. https://doi.org/10.1016/j.biomaterials.2008.07.025.

    Article  CAS  Google Scholar 

  10. Bilan R, Nabiev I, Sukhanova A. Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chem Bio Chem. 2016;17:2103–14. https://doi.org/10.1002/cbic.201600357.

    Article  CAS  Google Scholar 

  11. Jaiswal J, Goldman E, Mattoussi H, Simon S. Use of quantum dots for live cell imaging. Nat Methods. 2004;1:73–8. https://doi.org/10.1038/nmeth1004-73.

    Article  Google Scholar 

  12. Wang R, Zhang F. NIR luminescent nanomaterials for biomedical imaging. J Mater Chem B. 2014;2(17):2422–43. https://doi.org/10.1039/C3TB21447H.

    Article  CAS  Google Scholar 

  13. Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials. 2014;35:393–400. https://doi.org/10.1016/j.biomaterials.2013.10.010.

    Article  CAS  Google Scholar 

  14. Li Y, Liu Z, Hou Y, Yang G, Fei X, Zhao H, Guo Y, Su C, Wang Z, Zhong H. A multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl Mater Interfaces. 2017;9(30):25098–106.

    Article  CAS  Google Scholar 

  15. LeCroy GE, Yang ST, Yang F, Liu Y, Fernando KAS, Bunker CE, Hu Y, Luo PG, Sun YP. Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev. 2016;320–321:66–81. http://doi.org/10.1016/j.ccr.2016.02.017.

  16. Yong KT, Law WC, Hu R, Ye L, Liu L, Swihart MT, Prasad PN. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev. 2013;42:1236–50. https://doi.org/10.1039/C2CS35392J.

    Article  CAS  Google Scholar 

  17. Kim YSB, Jiang W, Oreopoulos J, Yip CM, Rutka JT, Chan WCW. Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett. 2008;8(11):3887–92. https://doi.org/10.1021/nl802311t.

    Article  CAS  Google Scholar 

  18. Yang ST, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu JH, Liu Y, Chen M, Huang Y, Sun YP. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C Nanomater Interfaces. 2009;113:18110–4. https://doi.org/10.1021/jp9085969.

    Article  CAS  Google Scholar 

  19. David Wegner K, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44:4792–834. https://doi.org/10.1039/C4CS00532E.

    Article  Google Scholar 

  20. Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys. 1984;80:4403–9. https://doi.org/10.1063/1.447218.

    Article  CAS  Google Scholar 

  21. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC. Review: biofunctionalized quantum dots in biology and medicine. J Nanomater. 2009;38:1–17. https://doi.org/10.1155/2009/815734.

    Article  CAS  Google Scholar 

  22. Ashoori RC. Electrons in artificial atoms. Nature. 1996;379:413–9. https://doi.org/10.1038/379413a0.

    Article  CAS  Google Scholar 

  23. Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater. 2001;94:44–63. https://doi.org/10.1016/j.actbio.2019.05.022.

    Article  CAS  Google Scholar 

  24. Trindade T, O’Brien P, Pickett NL. Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater. 2001;13:3843–58. https://doi.org/10.1021/cm000843p.

    Article  CAS  Google Scholar 

  25. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S. One dimensional nanostructured materials. Prog Mater Sci. 2007;52:699–913. https://doi.org/10.1016/j.pmatsci.2006.08.001.

    Article  CAS  Google Scholar 

  26. Singh S, Dhawan A, Karhana S, Bhat M, Dinda AK. Quantum dots: an emerging tool for point-of-care testing. Micromachines. 2020;11:1058–81. https://doi.org/10.3390/mi11121058.

    Article  Google Scholar 

  27. Dabbousi BO, Rodríguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG. (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 1997;101:9463–75. https://doi.org/10.1021/jp971091y.

    Article  CAS  Google Scholar 

  28. Mozafari M, Moztarzadeh F. Microstructural and optical properties of spherical lead sulphide quantum dots-based optical sensors. Micro Nano Lett. 2011;6:161–4. https://doi.org/10.1049/mnl.2010.0203.

    Article  CAS  Google Scholar 

  29. Maksym AP, Chakraborty T. Quantum dots in a magnetic field: role of electron-electron interactions. Phys Rev Lett. 1990;65:108. https://doi.org/10.1103/PhysRevLett.65.108.

    Article  CAS  Google Scholar 

  30. Bera D, Qian L, Tseng KT, Holloway PH. Quantum dots and their multimodal applications: a review. Materials. 2010;3:2260–345. https://doi.org/10.3390/ma3042260.

    Article  CAS  Google Scholar 

  31. Byers RJ, Hitchman ER. Quantum dots brighten biological imaging. Prog Histochem Cytochem. 2011;45:201. https://doi.org/10.1016/j.proghi.2010.11.001.

    Article  Google Scholar 

  32. Soloviev VN, Eichhöfer A, Fenske D, Banin U. Molecular limit of a bulk semiconductor: size dependence of the “band gap” in CdSe cluster molecules. J Am Chem Soc. 2000;122:2673–4. https://doi.org/10.1021/ja9940367.

    Article  CAS  Google Scholar 

  33. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21:41–6. https://doi.org/10.1038/nbt764.

    Article  CAS  Google Scholar 

  34. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O’Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007;2:1152–65. https://doi.org/10.1038/nprot.2007.107.

    Article  CAS  Google Scholar 

  35. Wang C, Gao X, Su X. In vitro and in vivo imaging with quantum dots. Anal Bioanal Chem. 2010;397:1397–415. https://doi.org/10.1007/s00216-010-3481-6.

    Article  CAS  Google Scholar 

  36. Xing L, Yang L. Surface modifications technology of quantum dots based biosensors and their medical applications. Chin J Anal Chem. 2014;42(7):1061–9. https://doi.org/10.1016/S1872-2040(14)60753-2.

    Article  Google Scholar 

  37. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298:1759–62. http://doi.org/10.1126/science.1077194.

  38. Jin S, Hu Y, Gu Z, Liu L, Wu HC. Application of quantum dots in biological imaging. J Nanomater. 2011;2011:1–13. https://doi.org/10.1155/2011/834139.

    Article  CAS  Google Scholar 

  39. Mathew S, Bhardwaj BS, Saran AD, Radhakrishnan P, Nampoori VPN, Vallabhan CPG, Bellare JR. Effect of ZnS shell on optical properties of CdSe-ZnS core-shell quantum dots. Opt Mater. 2015;39:46–51. https://doi.org/10.1016/j.optmat.2014.10.061.

    Article  CAS  Google Scholar 

  40. Mattoussi H, Palui G, Na HB. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev. 2012;64:138–66. https://doi.org/10.1016/j.addr.2011.09.011.

    Article  CAS  Google Scholar 

  41. Birudavolu S, Nuntawong N, Balakrishnan G, Xin YC, Huang S, Lee SC, Brueck SRJ. Selective area growth of InAs quantum dots formed on a patterned GaAs substrate. Appl Phys Lett. 2004;85(12):2337–9. https://doi.org/10.1063/1.1792792.

    Article  CAS  Google Scholar 

  42. Nakata Y, Mukai K, Sugawara M, Ohtsubo K, Ishikawa H, Yokoyama N. Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3 μm. J Cryst Growth. 2000;208:93–9. https://doi.org/10.1016/S0022-0248(99)00466-2.

    Article  CAS  Google Scholar 

  43. Bertino MF, Gadipalli RR, Martin LA, Rich LE, Yamilov A, Heckman RB, Leventis N, Guha S, Katsoudas J, Divan R. Quantum dots by ultraviolet and x-ray lithography. Nanotechnology. 2007;18(31):315603. http://doi.org/10.1088/0957-4484/18/31/315603.

  44. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett. 2012;7:480. https://doi.org/10.1186/1556-276X-7-480.

    Article  CAS  Google Scholar 

  45. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15. https://doi.org/10.1021/ja00072a025.

    Article  CAS  Google Scholar 

  46. Burda C, Chen X, Narayanan R. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–102. https://doi.org/10.1021/cr030063a.

    Article  CAS  Google Scholar 

  47. Rogach AL, Katsikas L, Kornowski A, Su D, Eychmüller A, Weller H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsenges Phys Chem 1996;100:1772–78. http://doi.org/10.1002/bbpc.19961001104.

  48. Qu L, Peng ZA, Peng X. Alternative routes toward high quality cdse nanocrystals. Nano Lett. 2001;1:333–7. https://doi.org/10.1021/nl0155532.

    Article  CAS  Google Scholar 

  49. Au GHT, Shih WY, Shih WH. High-conjugation-efficiency aqueous CdSe quantum dots. Analyst. 2013;138:7316–25. https://doi.org/10.1039/C3AN01198D.

    Article  CAS  Google Scholar 

  50. Yong KT, Law WC, Roy I, Jing Z, Huang H, Swihart MT, Prasad PN. Aqueous phase synthesis of CdTe quantum dots for biophotonics. J Biophotonics. 2011;4(1–2):9–20. http://doi.org/10.1002/jbio.201000080.

  51. Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000;30:545–610. http://doi.org/10.1146/annurev.matsci.30.1.545.

  52. Smith AM, Duan H, Mohs A, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Delivery Rev. 2008;60(11):1226–40. http://doi.org/10.1016/j.addr.2008.03.015.

  53. Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125:7100–6. https://doi.org/10.1021/ja035000o.

    Article  CAS  Google Scholar 

  54. Volkov Y. Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun. 2015;3:419–27. https://doi.org/10.1016/j.bbrc.2015.07.039.

    Article  CAS  Google Scholar 

  55. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Lancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed. 2017;12:5421–31. https://doi.org/10.2147/IJN.S138624.

    Article  CAS  Google Scholar 

  56. Drummen GPC. Quantum dots-from synthesis to applications in biomedicine and life sciences. Int J Mol Sci. 2010;11:154–63. https://doi.org/10.3390/ijms11010154.

    Article  CAS  Google Scholar 

  57. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7. https://doi.org/10.1038/nbt920.

  58. Contag CH, Ross DB. It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging. 2002;16:378–87. https://doi.org/10.1002/jmri.10178.

    Article  Google Scholar 

  59. Klostranec J, Chan CW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater. 2006;18:1953. https://doi.org/10.1002/adma.200500786.

    Article  CAS  Google Scholar 

  60. Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002;2E:11–8. https://doi.org/10.1038/nrc701.

    Article  CAS  Google Scholar 

  61. Jiang W, Papa E, Fischer H, MardyTani S, Chan WC. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol. 2004;22:607–9. https://doi.org/10.1016/j.tibtech.2004.10.012.

    Article  CAS  Google Scholar 

  62. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19:316–7. https://doi.org/10.1038/86684.

    Article  CAS  Google Scholar 

  63. Pinaud F, King D, Moore HP, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc. 2004;126:6115–23. https://doi.org/10.1021/ja031691c.

    Article  CAS  Google Scholar 

  64. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44. https://doi.org/10.1126/science.1104274.

    Article  CAS  Google Scholar 

  65. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8. https://doi.org/10.1021/nl0347334.

    Article  CAS  Google Scholar 

  66. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol. 2004;22:198–203. https://doi.org/10.1038/nbt929.

    Article  CAS  Google Scholar 

  67. Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res. 2003;13:503–7. https://doi.org/10.1038/sj.cr.7290194.

    Article  Google Scholar 

  68. Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 2004;32:e28. http://doi.org/10.1093/nar/gnh024.

  69. Gerion D, Chen FQ, Kannan B, Fu AH, Parak WJ, Chen DJ, Majumdar A, Alivisatos AP. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem. 2003;75:4766–72. https://doi.org/10.1021/ac034482j.

    Article  CAS  Google Scholar 

  70. Chen F, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004;4:1827–32. https://doi.org/10.1021/nl049170q.

    Article  CAS  Google Scholar 

  71. Bruchez JM, Moronne M, Gin P, Weiss S, Alivisatos PA. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6. https://doi.org/10.1126/science.281.5385.2013.

    Article  CAS  Google Scholar 

  72. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8. https://doi.org/10.1126/science.281.5385.2016.

    Article  CAS  Google Scholar 

  73. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc. 2004;126:6520–21. http://doi.org/10.1021/ja048792a

  74. Pellegrino T, Parak WJ, Boudreau R, LeGros MA, Gerion D, Alivisatos AP, Larabell CA. Quantum dot-based cell motility assay. Differentiation. 71:542–8. http://doi.org/10.1111/j.1432-0436.2003.07109006.x.

  75. Nisman R, Dellaire G, Ren Y, Li R, Bazett-Jones DP. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem. 2004;52:13–8. https://doi.org/10.1177/002215540405200102.

    Article  CAS  Google Scholar 

  76. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21:47–51. https://doi.org/10.1038/nbt767.

    Article  CAS  Google Scholar 

  77. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004;15:79–86. https://doi.org/10.1021/bc034153y.

    Article  CAS  Google Scholar 

  78. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci. 2002;99:12617–21. https://doi.org/10.1073/pnas.152463399.

    Article  CAS  Google Scholar 

  79. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med. 2005;11:678–82. https://doi.org/10.1038/nm1247.

    Article  CAS  Google Scholar 

  80. Kim S, Lim YT, Soltesz FG, Grand AMD, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor MD, Cohn HL, Bawendi GM, Frangioni VJ. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7. https://doi.org/10.1038/nbt920.

    Article  Google Scholar 

  81. Morgan NY, English S, Chen W, Chernomordik V, Russo A, Smith PD, Gandjbakhche A. Real time in vivo non-invasiveopticalimagingusingnear-infraredfluorescentquantumdots. Acad Radiol. 2005;12:313–23. https://doi.org/10.1016/j.acra.2004.04.023.

    Article  Google Scholar 

  82. Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H. Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat. 2007;103:23–8. https://doi.org/10.1007/s10549-006-9347-0.

    Article  Google Scholar 

  83. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 2007;7:1711–6. https://doi.org/10.1021/nl0707003.

    Article  CAS  Google Scholar 

  84. Noh YW, Lim YT, Chung BH. Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J. 2008;22:3908–18. http://doi.org/10.1096/fj.08-112896.

  85. Pic E, Pons T, Bezdetnaya L, Leroux A, Guillemin F, Dubertret B, Marchal F. Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node mapping in mice. Mol Imaging Biol. 2010;12:394–405. https://doi.org/10.1007/s11307-009-0288-y.

    Article  Google Scholar 

  86. Kosaka N, Mitsunaga M, Choyke PL, Kobayashi H. In vivo real-time lymphatic draining using quantum-dot optical imaging in mice. Contrast Media Mol Imaging. 2013;8:96–100. https://doi.org/10.1002/cmmi.1487.

    Article  CAS  Google Scholar 

  87. Voura EB, Jaiswal JK, Mattoussi H, Simon SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med. 2004;10:993–8. https://doi.org/10.1038/nm1096.

    Article  CAS  Google Scholar 

  88. Ding H, Yong KT, Law WC, Roy I, Hu R, Wu F, Zhao W, Huang K, Erogbogbo F, Bergey EJ, Prasad PN. Non-invasive tumor detection in small animals using novel functional pluronicnanomicelles conjugated with anti-mesothelin antibody. Nanoscale. 2011;3:1813–22. http://doi.org/10.1039/C1NR00001B.

  89. Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Can Res. 2007;67:1138–44. https://doi.org/10.1158/0008-5472.CAN-06-1185.

    Article  CAS  Google Scholar 

  90. Gonda K, Watanabe TM, Ohuchi N, Higuchi H. In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J Biol Chem. 2010;285:2750–7. https://doi.org/10.1074/jbc.M109.075374.

    Article  CAS  Google Scholar 

  91. Yang K, Cao YA, Shi C, Li ZG, Zhang FJ, Yang J, Zhao C. Quantum dot-based visual in vivo imaging for oral squamous cell carcinoma in mice. Oral Oncol. 2010;46:864–8. http://doi.org/10.1016/j.oraloncology.2010.09.009.

  92. Kobayashi H, Longmire MR, Ogawa M, Choyke PL, Kawamoto S. Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol. 2010;11:589–95. https://doi.org/10.1016/S1470-2045(10)70009-7.

    Article  Google Scholar 

  93. Lim YT, Cho MY, Noh YW, Chung JW, Chung BH. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. Nanotechnology. 2009;20:475102.

    Google Scholar 

  94. Liu G, Swierczewska M, Niu G, Zhang X, Chen X. Molecular imaging of cell-based cancer immunotherapy. Mol Biosyst. 2011;7(4):993–1003. https://doi.org/10.1039/C0MB00198H.

    Article  CAS  Google Scholar 

  95. Li Y, Li Z, Wang X, Liu F, Cheng Y, Zhang B, Shi D. In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates. Theranostics. 2012;2(8):769–76. https://doi.org/10.7150/thno.4690.

    Article  CAS  Google Scholar 

  96. Chen Y, Molnar M, Li L, Friberg P, Gan LM, Brismar H, Fu Y. Characterization of VCAM-1-binding peptide-functionalized quantum dots for molecular imaging of inflamed endothelium. PLoS One. 2013;8:e83805. http://doi.org/10.1371/journal.pone.0083805.

  97. Kwon H, Lee J, Song R, Hwang SI, Lee J, Kim YH, Lee HJ. In vitro and in vivo imaging of prostate cancer angiogenesis using anti-vascular endothelial growth factor receptor 2 antibody-conjugated quantum dot. Korean J Radiol. 2013;14:30–7. https://doi.org/10.3348/kjr.2013.14.1.30.

    Article  Google Scholar 

  98. Manabe N, Hoshino A, Liang Y, Goto T, Kato N, Yamamoto K. Quantum dot as a drug tracer in vivo. IEEE Trans Nanobiosci. 2006;5(4):263–7. https://doi.org/10.1109/TNB.2006.886569.

    Article  Google Scholar 

  99. Kulkarni NS, Parvathaneni V, Shukla SK, Barasa L, Perron JC, Yoganathan S, Muth A, Gupta V. Tyrosine kinase inhibitor conjugated quantum dots for non-small cell lung cancer (NSCLC) treatment. Eur J Pharm Sci. 133:145–59. http://doi.org/10.1016/j.ejps.2019.03.026.

  100. Wei J, Wu J, Xu W, Nie H, Zhou R, Wang R, Liu Y, Tang G, Wu J. Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway. Cell Death Dis. 2018;9:599. https://doi.org/10.1038/s41419-018-0623-9.

    Article  CAS  Google Scholar 

  101. Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C. 2018;87:50–9. https://doi.org/10.1016/j.msec.2018.02.010.

    Article  CAS  Google Scholar 

  102. Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol. 2019;49:352–64. https://doi.org/10.1016/j.jddst.2018.12.010.

    Article  CAS  Google Scholar 

  103. Ruzycka-Ayoush M, Kowalik P, Kowalczyk A, Bujak P, Nowicka AM, Wojewodzka M, Kruszewski M, Grudzinski IP. Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol. 2021;12:9. https://doi.org/10.1186/s12645-021-00077-9.

    Article  CAS  Google Scholar 

  104. Guo GN, Liu W, Liang JG, Xu HB, He ZK, Yang XL. Preparation and characterization of novel CdSe quantum dots modified with poly (D, L-lactide) nanoparticles. Mater Lett. 2006;60:2565–8. https://doi.org/10.1016/j.matlet.2006.01.073.

    Article  CAS  Google Scholar 

  105. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165–72. https://doi.org/10.1289/ehp.8284.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. A. Chandra acknowledged Chittaranjan National Cancer Institute, Kolkata for facilities and research support.

Notes

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, P., Chandra, A. (2022). Quantum Dot: A Boon for Biological and Biomedical Research. In: Barik, P., Mondal, S. (eds) Application of Quantum Dots in Biology and Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-3144-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3144-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3143-7

  • Online ISBN: 978-981-19-3144-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics