Skip to main content

Utilization of Biosensors in the Identification of Bacterial Diseases in Maize

  • Chapter
  • First Online:
Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management

Abstract

Nanotechnology is an emerging technological and scientific breakthrough that can transform agricultural sectors by providing novel tools for the molecular detection of biotic and abiotic stress, and the rapid detection of phytopathogenic diseases. In plants, it has the potential to enhance their capacity to absorb water and nutrients from the soil. Furthermore, nanobiotechnology improves our understanding of crop biology, yields, and nutritional values. The various applications of nanotechnology in agriculture are (1) energy storage, production and conversion (photovoltaic modules); (2) increased agricultural productivity (nanoporous zeolites for prolonged and efficient release of fertilizers); (3) capsules for the specific release of pesticides; (4) the use of biosensors for monitoring the soil quality and plant vitality; (5) pest and phytopathogen detection biosensors; and (6) pesticide biosensors. Nanosensors and intelligent delivery systems based on nano-products are used in the agricultural sector to combat crop pathogens. This nanotechnology seeks to minimize nutrient losses in fertilization and improve crop productivity by optimizing the use of water and nutrients. Nanotechnology provides a wide range of opportunities to produce agro-products based on nanomaterials such as fertilizers, pesticides, herbicides, and nanosensors. These will make it possible to increase the food yield sustainably, reduce the environmental impact and detect infections in plants. This chapter talks about how nanotechnology can be used in plant pathology and how nanomaterials can be used to make biosensors that can detect the main bacterial diseases in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agri-food: a review. Int J Curr Microbiol App Sci 3(3):43–55. https://www.ijcmas.com/vol-3-3/Shweta%20Agrawal%20and%20Pragya%20Rathore.pdf

    Google Scholar 

  • Akyilmaz E, Dinckaya E (2000) A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum. Talanta 53:505–509

    Article  CAS  PubMed  Google Scholar 

  • Alam AR, Ismat F, Sayeed K, Khan A, Akhtar S, Farooqui A, Siddiqui MH (2016) Application of nanotechnology in agri-food and food science. World J Pharm Sci 4(7):45–54. http://www.wjpsonline.org/admin/uploads/Oc52t6.pdf

    CAS  Google Scholar 

  • Ali Q, Ahmar S, Sohail MA, Kamran M, Ali M, Saleem MH, Ali S (2021) Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environ Sci Pollut Res 28(8):9002–9019

    Article  CAS  Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423

    Article  CAS  PubMed  Google Scholar 

  • Amini M, Saify H (2017) Application of aptamers in medicinal plants. MedCrave. https://medcraveonline.com/MOJBM/application-of-aptamers-inmedicinal-plants.html

    Google Scholar 

  • Annamalai K, Puri IK (2006) Combustion science and engineering, 1st edn. Boca Raton CRC Press, 1184 p

    Book  Google Scholar 

  • Ammar AS (2018) Nanotechnologies associated to floral resources in agri-food sector. Acta Agron 67(1):146–159

    Article  Google Scholar 

  • Ángeles A, Cañizares M (2004) Desarrollo de un sistema sensor para la cuantificación de glucosa en jugos de frutas. Rev Soc Quím Méx 8:106–110

    Google Scholar 

  • Bănică FG (2012) Chemical sensors and biosensors: fundamentals and applications, 1st edn. Wiley, Chichester, p 541

    Book  Google Scholar 

  • Bassi AS, Lee E, Zhu JX (1998) Carbon paste mediated, amperometric, thin film biosensors for fructose monitoring in honey. Food Res Int 31:119–127

    Article  CAS  Google Scholar 

  • Bogani P, Minunni M, Spiriti MM, Zavaglia M, Tombelli S, Buiatti M, Mascini M (2008) Food Chem 113:658

    Article  Google Scholar 

  • Boiarski AA, Busch JR, Brody RS, Ridgway RW, Altman WP, Golden C (1996) Proc SPIE-Int Soc Opt Eng 2686:45–52

    CAS  Google Scholar 

  • Capobianco JA, Armstrong CM, Lee J, Gehring AG (2021) Detection of pathogenic bacteria in large volume food samples using an enzyme-linked immunoelectrochemical biosensor. Food Control 119:107456

    Article  CAS  Google Scholar 

  • Carter RM, Lubrano GJ, Guilbault GG (1994) Life Chem Rep 11:271–277

    CAS  Google Scholar 

  • Centonze D, Zambonin CG, Palmisano F (1997) Determination of glucose in nonalcoholic beverages by a biosensor coupled with microdialysis fiber samplers. J AOAC Int 80:829–833

    Article  CAS  Google Scholar 

  • Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3(14):4473–4491

    Article  CAS  Google Scholar 

  • Coppedè N, Janni M, Bettelli M (2017) A in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci Rep 7:16195. https://doi.org/10.1038/s41598-017-16217-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corredor E, Testillano P, Coronado M, González P, Fernández P, Marquina C, Ibarra R, de la Fuente, Rubiales D, Pérez A, Risueño M (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:1–11

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Datskos PG, Lavrik VN, Sepaniak MJ (2005) Chemical and biological sensors based on microcantilevers. Kluwer Academic Publishers

    Google Scholar 

  • Delehanty JB, Ligler FS (2002) Anal Chem 74:5681–5687

    Article  CAS  PubMed  Google Scholar 

  • Drygin YF, Blintsov AN, Grigorenko VG, Andreeva IP, Osipov AP, Varitzev YA (2012) Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl Microbiol Biotechnol 93:179–189

    Article  PubMed  Google Scholar 

  • Dyussembayev K, Sambasivam P, Bar I, Brownlie JC, Shiddiky MJA, Ford R (2021) Biosensor technologies for early detection and quantification of plant pathogens. Front Chem 9:63624. https://doi.org/10.3389/fchem.2021.636245

    Article  CAS  Google Scholar 

  • Eggins BR (2002) Chemical sensors and biosensors. Wiley, Chichester

    Book  Google Scholar 

  • Eggins BR, Hickey C, Toft SA, Zhou DM (1997) Determination of flavonols in beers with tissue biosensors. Anal Chim Acta 347:281–288

    Article  CAS  Google Scholar 

  • Ekinci KL, Huang XMH, Roukes ML (2004) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84:4469

    Article  CAS  Google Scholar 

  • El-Temsah Y, Joner E (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  PubMed  Google Scholar 

  • Faber C, Kurousky D (2018) Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem 90:3009–3012

    Article  Google Scholar 

  • Feng M, Kong D, Wang W, Liu L, Song S, Xu C (2015) Development of an immunochromatographic strip for rapid detection of Pantoea stewartii subsp. stewartii. Sensors 15:4291–4301. https://doi.org/10.3390/s150204291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraceto L, Grillo R, de Medeiros G, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:1–5

    Article  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonization of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez RV, Garcia IE, Ruiz GO, Gago LC (2005) Aplicaciones de biosensores en la industria agroalimentaria. Technical report. Universidad complutense de Madrid

    Google Scholar 

  • Goron TL, Raizada MN (2016) Biosensor-based spatial and developmental mapping of maize leaf glutamine at vein-level resolution in response to different nitrogen rates and uptake/assimilation durations. BMC Plant Biol 16:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Götz M, Gomes NCM, Dratwinski A, Costa R, Berg G, Peixoto R, Mendonça-Hagler L, Smalla K (2006) Survival of gfp–tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol Ecol 56:207–218

    Article  PubMed  Google Scholar 

  • Guilbault GG, Sibley DET, Carter RM, Lubrano GJ, Nato S (1993) Ser Ser E 252:377–385

    CAS  Google Scholar 

  • Huang X, Xu J, Ji HF, Li G, Chen H (2014) Quartz crystal microbalance based biosensor for rapid and sensitive detection of maize chlorotic mottle virus. Anal Methods 6:4530–4536. https://doi.org/10.1039/c4ay00292j

    Article  CAS  Google Scholar 

  • IBIAN (2020) Aptámeros. IBIAN Technologies. https://www.ibiantech.com/aptameros/

    Google Scholar 

  • Katrlık J, Svorc J, Stred’ansky M, Miertus M (1998) Composite alcohol biosensors based on solid binding matrix. Biosens Bioelectron 13:183–191

    Article  Google Scholar 

  • Kelly SC, O’Connell PJ, O’Sullivan CK, Guilbault GG (2000) Development of an interferent free amperometric biosensor for determination of L-lysine in food. Anal Chim Acta 412:111–119

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Arora K (2020) Trends in nano-inspired biosensors for plants. Mater Sci Energy Technol 3:255–273

    CAS  Google Scholar 

  • Kumar I, Kumar R (2018) Production of secondary metabolites in plants under abiotic stress: an overview. Signif Bioeng Biosci. ISSN 2637-8078. https://crimsonpublishers.com/sbb/pdf/SBB.000545.pdf

  • Kumar P, Colston JT, Chambers JP, Rael ED, Valdes JJ (1994) Biosens Bioelectron 9:57–63

    Article  CAS  PubMed  Google Scholar 

  • Kwong AWK, Gründig B, Hu J, Renneberg R (2000) Comparative study of hydrogel-immobilized L-glutamate oxidases for a novel thick-film biosensor and its application in food samples. Biotechnol Lett 22:267–272

    Article  CAS  Google Scholar 

  • Li Z, Yu T, Paul R, Fan J, Yang Y, Wei Q (2020) Agricultural nanodiagnostics for plant diseases: recent advances and challenges. Nanoscale Adv 2(8):3083–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liawruangrath S, Oungpipat W, Watanesk S, Liawruangrath B, Dongduen C, Purachat P (2001) Asparagus-based amperometric sensor for fluoride determination. Anal Chim Acta 448:37–46

    Article  CAS  Google Scholar 

  • Liu F, Li K, Zhang Y, Ding J, Wen T, Pei X, Yan Y, Ji W, Liu J, Zhang X, Li L (2020) An electrochemical DNA biosensor based on nitrogen-doped graphene nanosheets decorated with gold nanoparticles for genetically modified maize detection. Microchim Acta 187(10):574

    Article  CAS  Google Scholar 

  • Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M (2008) Anal Chim Acta 609:139

    Article  CAS  PubMed  Google Scholar 

  • Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500

    Article  CAS  PubMed  Google Scholar 

  • Malsch I, Subramanian V, Semenzin E, Hristozov D, Marcomini A (2015) Supporting decision-making for sustainable nanotechnology. Environ Sys Decis 35:54–75

    Article  Google Scholar 

  • Mannelli I, Minunni M, Tombelli S, Mascini M (2003) Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosens Bioelectron 18:129

    Article  CAS  PubMed  Google Scholar 

  • Maragos CM, Thompson VS (1999) Fiber-optic immunosensor for mycotoxins. Nat Toxins 7(6):371–376

    Article  CAS  PubMed  Google Scholar 

  • Marconi E, Panfili G, Messia MC, Cubadda R, Compagnone D, Palleschi G (1996) Fast analysis of lysine in food using protein microwave hydrolysis and an electrochemical biosensor. Anal Lett 29:1125–1137

    Article  CAS  Google Scholar 

  • Mascini MST (2008) Biosensors for biomarkers in medical diagnostics. Biomarkers 13:637–657

    Article  CAS  PubMed  Google Scholar 

  • McNaught A, Wilkinson A (1997) Compendium of chemical terminology, 2nd edn. (The “Gold Book”), Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237–256

    Article  CAS  Google Scholar 

  • Michelini E, Simoni P, Cevenini L, Mezzanotte L, Roda A (2008) New trends in bioanalytical tools for the detection of genetically modified organisms: an update. Anal Bioanal Chem 392(3):355–367

    Article  CAS  PubMed  Google Scholar 

  • Miertus S, Katrlík J, Pizzariello A, Stred’anský M, Svitel J, Svorc J (1998) Amperometric biosensors based on solid binding matrices applied in food quality monitoring. Biosens Bioelectron 13:911–923

    Article  CAS  PubMed  Google Scholar 

  • Minunni M, Tombelli S, Fonti J, Spiriti MM, Mascini M, Bogani P, Buiatti M (2005) Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach. J Am Chem Soc 127:7966

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163. https://doi.org/10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  • Nasrullah U (2021) Review on biological techniques, microbial food testing approaches, biosensors principles and applications. Sch Bull 7(4):82–86

    Article  Google Scholar 

  • Nicu L, Guirardel M, Chambosse F, Rougerie P, Hinh S, Trevisiol E, Francois JM, Majoral JP, Caminade AM, Cattan E, Bergaud C (2005) Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin-gold nanoparticles interaction with biotinylated DNA. Sens Actuators B

    Google Scholar 

  • Niculescu M, Mieliauskiene R, Laurinavicius V, Csöregi E (2003) Simultaneous detection of ethanol, glucose and glycerol in wines using pyrroloquinoline quinone dependent dehydrogenases based biosensors. Food Chem 82:481–489

    Article  CAS  Google Scholar 

  • O’Sullivan CK, Guilbautl GG (1999) Commercial quartz cristal microbalances-theory and applications. Biosens Bioelectron 14(8–9):663–670

    Article  Google Scholar 

  • Ogert RA, Brown JE, Singh BR, Shriver-Lake LC, Ligler FS (1992) Anal Biochem 205:306–312

    Article  CAS  PubMed  Google Scholar 

  • Olschewski H, Erlenkötter A, Zaborosch C, Chemnitius GC (2000) Screen-printed enzyme sensors for l-lysine determination. Enzym Microb Technol 26:537–543

    Article  CAS  Google Scholar 

  • Pagare S (2015) Secondary metabolites of plantas and their role:overview. Curr Trends Biotechnol Pharm 9(3):293–304

    Google Scholar 

  • Palleschi G, Compagnone D, Moscone D (1997) Construction and application of highly selective sensors and biosensors using nonconducting electropolymerized films. VTT Symp 177:141–160

    CAS  Google Scholar 

  • Palmisano F, Rizzi R, Centonze D, Zambonin PG (2000) Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens Bioelectron 15:531–539

    Article  CAS  PubMed  Google Scholar 

  • Patandjengi B, Junaid M, Muis A (2021) The presence of bacterial stalk rot disease on corn in Indonesia: a review. In: IOP conference series: earth and environmental science, vol 911(1). IOP Publishing, p 012058

    Google Scholar 

  • Pérez A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  Google Scholar 

  • Patel PD (2002) (Bio)sensors for measurement of analytes implicated in food safety: a review. Trends Anal Chem 21(2):96–115

    Article  CAS  Google Scholar 

  • Petrlova J, Krizkova S, Supalkova V, Masarik M, Adam V, Havel L, Kramer KJ, Kizek R (2007) The determination of avidin in genetically modified maize by voltametric techniques. Plant Soil Environ 53(8):345–349

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agri-food: present concerns and future aspects. Afr J Biotechnol 13(6):705–713. https://doi.org/10.5897/AJBX2013.13554

    Article  CAS  Google Scholar 

  • Prodromidis MI, Tzouwara-Karayanni SM, Karayannis MI, Vadgama PM (1997) Bioelectrochemical determination of citric acid in real samples using a fully automated flow injection manifold. Analyst 122:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Qsense (2011) QSense. http://www.q.sense.com technical report

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Ramanathan K, Jönsson BR, Danielsson B (2001) Sol-gel based thermal biosensor for glucose. Anal Chim Acta 427:1–10

    Article  CAS  Google Scholar 

  • Rameshaiah GN, Pallavi J, Shabnam S (2015) Nano fertilizers and nano sensors—an attempt for developing smart agri-food. Int J Eng Res Gen Sci 3(1):314–320. http://pnrsolution.org/Datacenter/Vol3/Issue1/40.pdf

    Google Scholar 

  • Rebollar-Pérez G, Campos-Teran J, Ornelas-Soto N, Méndez-Albores A, Torres E (2020) Biosensor base on oxidative enzymes for detection of environmental pollutants. Biocatalysis 1:118–129

    Google Scholar 

  • Sadanandom A (2010) Biosensors in plants. Curr Opin Plant Biol 13(6):736–743

    Article  CAS  PubMed  Google Scholar 

  • Sarkar P, Tothill IE, Setford SJ, Turner APF (1999) Screen-printed amperometric biosensors for the rapid measurement of L- and D-amino acids. Analyst 124:865–870

    Article  CAS  PubMed  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15(2):22–44. http://www.ijsaf.org/archive/15/2/scrinis_lyons.pdf

    Google Scholar 

  • Sekine Y, Hall EAH (1998) A lactulose sensor based on coupled enzyme reactions with a ring electrode fabricated from tetrathiafulvalen-tetracyanoquinodimetane. Biosens Bioelectron 13:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Shahi SC, Dadmehr M, Korouzhdehi B, Tavassoli A (2021) A novel colorimetric biosensor for sensitive detection of aflatoxin mediated by bacterial enzymatic reaction in saffron samples. Nanotechnology 32(50):505503

    Article  CAS  Google Scholar 

  • Shiva V (2016) The violence of the green revolution: third world agriculture, ecology, and politics. University Press of Kentucky, Lexington, KY

    Google Scholar 

  • Shrivastava A, Sharma RK (2021) Biosensors for the detection of mycotoxins. Toxin Rev:1–21

    Google Scholar 

  • Silber A, Bräuchle C, Hampp N (1994) Dehydrogenase-based thick-film biosensors for lactate and malate. Sensor Actuat B Chem 18:235–239

    Article  CAS  Google Scholar 

  • Smart A, Crew A, Pemberton R, Hughes G, Doran O, Hart JP (2020) Screen-printed carbon-based biosensors and their applications in agri-food safety. TrAC Trends Anal Chem 127:115898

    Article  CAS  Google Scholar 

  • Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y (2022) Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ Res 204:112082

    Article  CAS  PubMed  Google Scholar 

  • Song K, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors (Basel) 12(1):612–631

    Article  Google Scholar 

  • Sorensen J, Ncolaisen MH, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant Soil 321:483–512

    Article  Google Scholar 

  • Srilatha B (2011) Nanotechnology in agri-food. J Nanomed Nanotechnol 2(7):123–128. https://doi.org/10.4172/2157-7439.1000123

    Article  Google Scholar 

  • Subramanian V, Semenzin E, Hristozov D, Zondervan E, Linkov I, Marcomini A (2015) Review of decision analytic tools for sustainable nanotechnology. Environ Sys Decis 35:29–41

    Article  Google Scholar 

  • Sun H, Zhang Y, Fung Y (2006) Flow analysis coupled with PQC/DNA biosensor for assay of E. coli based on detecting DNA products from PCR amplification. Biosens Bioelectron 22:506

    Article  CAS  PubMed  Google Scholar 

  • Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  PubMed  Google Scholar 

  • Tombelli S, Mascini M, Scherm B, Battacone G, Migheli Q (2009) DNA biosensors for the detection of aflatoxin producing Aspergillus flavus and A. parasiticus. Monatsh Chem 140(8):901–907

    Article  CAS  Google Scholar 

  • Tran MC, Pandey PC (1992) Biosensors for environmental applications: future development trends. Bull Electrochem 8:199–204

    Google Scholar 

  • Turner AP, Newman JD (1998) An introduction to biosensor. In: Gateshead TW (ed) Biosensor for food analysis. Athenaeum, London, pp 13–27

    Google Scholar 

  • Velasco-García M, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84(1):1–12

    Article  Google Scholar 

  • Voke E, Pinals RL, Goh NS, Landry MP (2021) In planta nanosensors: understanding biocorona formation for functional design. ACS Sens 6(8):2802–2814

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483:150–156

    Article  CAS  Google Scholar 

  • Volkov AG, Mwesigwa J (2001) Interfacial electrical phenomena in green plants: action potentials. In: Volkov AG (ed) Liquid interfaces in chemical, biological, and pharmaceutical applications. M Dekker, New York, pp 649–681

    Chapter  Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DI, Markin VS (1998) Liquid interfaces in chemistry and biology. Wiley, New York

    Google Scholar 

  • Wang J, Li X, Shen X, Zhang A, Liu J, Lei H (2021) Polystyrene microsphere-based immunochromatographic assay for detection of aflatoxin B1 in maize. Biosensors 11:200. https://doi.org/10.3390/bios11060200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss B, Schaefer U, Zapp J, Lamprecht A, Stallmach A, Lehr C (2006) Nanoparticles made of fluorescencelabelled poly (L-lactide-co-glycolide): preparation, stability, and biocompatibility. J Nanosci Nanotechnol 6:3048–3056

    Article  CAS  PubMed  Google Scholar 

  • Wen JT, Castro C, Tsutsui H (2015) In planta microsphere-based lateral flow leaf biosensor in maize. J Lab Autom 20(4):500–505

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Boulet J, Adriaensen D, Timmermans JP, Prinsen E, Van Oevelen S, D’Haen J, Smeets K, van der Lelie D, Taghavi S, Vangronsveld J (2012) Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356(1):217–230

    Article  CAS  Google Scholar 

  • Wijesuriya DC, Rechnitz GA (1993) Biosensors based on plant and animal tissues. Biosens Bioelectron 8:155–160

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273. https://doi.org/10.1111/j.1467-7652.2005.00123.x

    Article  CAS  PubMed  Google Scholar 

  • Wu VCH, Chen SH, Lin CS (2007) Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance. Biosens Bioelectron 22:2967

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W (2019) Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appl Mater Int 11:31283–31290. https://doi.org/10.1021/acsami.9b08789

    Article  CAS  Google Scholar 

  • Zeng C, Huang X, Jiangmin X, Li G, Ma J, Ji H-F, Zhu S, Chen H (2013) Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem 440(1):18–22. https://doi.org/10.1016/j.ab.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Turner KL (2005) Application of parametric resonances amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens Actuators A 122:23–30

    Article  CAS  Google Scholar 

  • Zhang F, Zou M, Chen Y, Li J, Wang Y, Qi X (2014) Lanthanide labeled immunochromatographic strips for the rapid detection of Pantoea stewartii subsp. stewartii. Biosens Bioelectron 51:29–35. https://doi.org/10.1016/j.bios.2013.06.065

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Fan X, Li J, Ye T, Mishra S, Zhang L, Chen S (2021) Exploration of the quorum-quenching mechanism in Pseudomonas nitroreducens W-7 and its potential to attenuate the virulence of Dickeya zeae EC1. Front Microbiol 12

    Google Scholar 

  • Zhan MY, Bin T, Lan L, Hao T, Li JT, Jian HJ (2018) Spinach-based fluorescent light-up biosensors for multiplexed and label-free detection of microRNAs. Chem Commun 54(24):3010–3013

    Article  Google Scholar 

  • Zimdahl RL (1999) Fundamentals of weed science, 3rd edn. Academic Press, London, p 689p. http://base.dnsgb.com.ua/files/book/Agri-food/Weed/Fundamentals-of-Weed-Science.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebert Jair Barrales-Cureño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Valdez, L.G. et al. (2022). Utilization of Biosensors in the Identification of Bacterial Diseases in Maize. In: Abd-Elsalam, K.A., Mohamed, H.I. (eds) Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-3120-8_14

Download citation

Publish with us

Policies and ethics