Skip to main content

Economic and Eco-friendly Alternatives for the Efficient and Safe Management of Wheat Diseases

  • Chapter
  • First Online:
Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management

Abstract

The achievement of high cereal production while considering environmental and health safety standards is an essential goal for all countries to meet their own food needs and feed the rapidly growing population around the world. In this regard, wheat (Triticum aestivum L.) is a strategic crop of great importance to global food security, especially in developing countries. It is even more important for the consumers of all sectors and regions where people rely on wheat as a significant element in their diets. However, several biotic and abiotic stress factors bring about the limiting and declining of local wheat production in return for the increasing needs of the growing population. To deal with such challenges, procedures allow for the use of agrochemicals as a means of achieving a high wheat yield. However, the unrestricted use of such chemicals causes serious damage to the agricultural ecosystem, particularly in those ecosystems that lack organic soil content and a high level of biodiversity, which help to restore its natural vigor after extensive use of agrochemicals. As a result, these demands to look for other eco-friendly alternatives will help us make satisfactory progress in controlling wheat disease and successfully restore and sustain our agricultural ecosystem. In this chapter, we’re going to talk about natural ways to boost the production of wheat cultivars by making them more able to fight off or at least tolerate wheat diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal G, Carcache PJB, Addo EM, Kinghorn AD (2020) Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 38:107337

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E (2016) Plant resistance inducers against pathogens in Solanaceae species—from molecular mechanisms to field application. Int J Mol Sci 17(10)

    Google Scholar 

  • Almoneafy AA (2006) Pathological studies on Wheat Yellow Rust (Puccinia striiformis f.sp tritici) in Yemen. Master thesis: Sana’a University, Sana’a, Yemen

    Google Scholar 

  • Almoneafy AA, Moustafa-Farag M, Mohamed HI (2021) The auspicious role of plant growth-promoting rhizobacteria in the sustainable management of plant diseases. In: Mohamed HI, El-Beltagi HE-DS, Abd-Elsalam KA (eds) Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Cham, pp 251–283

    Chapter  Google Scholar 

  • Ashiq S, Edwards SG, Fatukasi O, Watson A, Back MA (2021) In vitro activity of isothiocyanates against Fusarium graminearum. Plant Pathol 71(3):594–601

    Article  Google Scholar 

  • Bahadar K, Munir A, Asad S (2016) Management of Bipolaris sorokiniana the causal pathogen of spot blotch of wheat by eucalyptus extracts. JPPM 7(1):1000326

    Google Scholar 

  • Baysal-Gurel F, Liyanapathiranage P, Addesso KM (2020) Effect of Brassica crop-based biofumigation on soilborne disease suppression in woody ornamentals. Can J Plant Pathol 42(1):94–106

    Article  Google Scholar 

  • Ben M’Barek S, Karisto P, Abdedayem W, Laribi M, Fakhfakh M, Kouki H, Mikaberidze A, Yahyaoui A (2020) Improved control of septoria tritici blotch in durum wheat using cultivar mixtures. Plant Pathol 00:1–11

    Google Scholar 

  • Borg J, Kiær LP, Lecarpentier C, Goldringer I, Gauffreteau A, Saint-Jean S, Barot S, Enjalbert J (2018) Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Res 221(2018):298–313

    Article  Google Scholar 

  • Brooker RW, George TS, Homulle Z, Karley AJ, Newton AC, Pakeman RJ, Schöb C (2021) Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming. J Ecol 109(5):2054–2067

    Article  Google Scholar 

  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90(6):645–655

    Article  CAS  PubMed  Google Scholar 

  • Campanella V, Mandalà C, Angileri V, Miceli C (2020) Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Protect. 130:105073

    Article  CAS  Google Scholar 

  • Cawood ME, Pretorius JC, van der Westhuizen AJ, Pretorius ZA (2010) Disease development and PR-protein activity in wheat (Triticum aestivum) seedlings treated with plant extracts prior to leaf rust (Puccinia triticina) infection. Crop Protect. 29(11):1311–1319

    Article  Google Scholar 

  • Chhipa H (2019) Chapter 5 - Mycosynthesis of nanoparticles for smart agricultural practice: a green and eco-friendly approach. In: Shukla AK, Iravani S (eds) Green synthesis, characterization and applications of nanoparticles. Elsevier, pp 87–109

    Chapter  Google Scholar 

  • de Vallavieille-Pope C (2004) Management of disease resistance diversity of cultivars of a species in single fields: controlling epidemics. C R Biol 327(7):611–620

    Article  PubMed  Google Scholar 

  • Drakopoulos D, Kägi A, Gimeno A, Six J, Jenny E, Forrer H-R, Musa T, Meca G, Vogelgsang S (2020) Prevention of Fusarium head blight infection and mycotoxins in wheat with cut-and-carry biofumigation and botanicals. Field Crops Res 246:107681

    Article  Google Scholar 

  • Draz IS, Elkhwaga AA, Elzaawely AA, El-Zahaby HM, Ismail A-WA (2019) Application of plant extracts as inducers to challenge leaf rust of wheat. Egypt J Biol Pest Control 29(1):6

    Article  Google Scholar 

  • Durán P, de la Luz Mora M (2021) Plant–soil–microorganism interaction involved in natural suppression of take-all disease. In: Kaushal M, Prasad R (eds) Microbial biotechnology in crop protection. Springer, Singapore, pp 171–188

    Google Scholar 

  • Eke P, Chatue Chatue G, Wakam LN, Kouipou RMT, Fokou PVT, Boyom FF (2016) Mycorrhiza consortia suppress the fusarium root rot (Fusarium solani f. sp. Phaseoli) in common bean (Phaseolus vulgaris L.). Biol Control 103:240–250

    Article  Google Scholar 

  • El-Gamal NG, El-Mougy NS, Abdel-Kader MM, Ali Khalil MS (2021) Influence of inorganic salts and chitosan as foliar spray on wheat septoria leaf blotch disease severity under field conditions. Arch Phytopathol Plant Protect 54(13–14):836–849

    Article  CAS  Google Scholar 

  • Etalo Desalegn W, Jeon J-S, Raaijmakers JM (2018) Modulation of plant chemistry by beneficial root microbiota. Nat Prod Rep 35(5):398–409

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xu B, Liu L, Gu Y, Liu Q, Turner NC, Li FM (2014) Does a mixture of old and modern winter wheat cultivars increase yield and water use efficiency in water-limited environments? Field Crops Res 156:12–21

    Article  Google Scholar 

  • FAO (2020) FAOSTAT statistical database. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Finckh M, Gacek E, Goyeau H, Lannou C, Merz U, Mundt C, Munk L, Nadziak J, Newton A, De Vallavieille-Pope C, Wolfe M (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20(7):813–837

    Article  Google Scholar 

  • Galletti S, Sala E, Leoni O, Burzi PL, Cerato C (2008) Trichoderma spp. tolerance to Brassica carinata seed meal for a combined use in biofumigation. Biol Control 45(3):319–327

    Article  Google Scholar 

  • Gao T, Bian R, Joseph S, Taherymoosavi S, Mitchell DRG, Munroe P, Xu J, Shi J (2020) Wheat straw vinegar: a more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Sci Total Environ 725:138359

    Article  CAS  PubMed  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2009) Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev 8(1):299–310

    Article  CAS  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9(4):414–420

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Shim SH, Jang KS, Choi YH, Dang QL, Kim H, Choi GJ (2018) In vivo assessment of plant extracts for control of plant diseases: a sesquiterpene ketolactone isolated from Curcuma zedoaria suppresses wheat leaf rust. J Environ Sci Health Pt B: Pestic Food Contam Agric Wastes 53(2):135–140

    Article  CAS  Google Scholar 

  • He X, Deng H, Hwang H-m (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27(1):1–21

    Article  PubMed  Google Scholar 

  • Huang C, Sun ZY, Wang HG, Luo Y, Ma ZH (2011) Spatiotemporal effects of cultivar mixtures on wheat stripe rust epidemics. Eur J Plant Pathol 131:483–496

    Article  Google Scholar 

  • Huang C, Sun ZY, Wang HG, Luo Y, Ma ZH (2012) Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Prot 33:52–58

    Article  Google Scholar 

  • Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G, Li B (2020) Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat fusarium head blight pathogen fusarium graminearum. Nano 10(2):219

    CAS  Google Scholar 

  • Kang X, Zhang W, Cai X, Zhu T, Xue Y, Liu C (2018) Bacillus velezensis CC09: a potential ‘vaccine’ for controlling wheat diseases. Mol Plant-Microbe Interact 31(6):623–632

    Article  CAS  PubMed  Google Scholar 

  • Kang X, Guo Y, Leng S, Xiao L, Wang L, Xue Y, Liu C (2019) Comparative transcriptome profiling of Gaeumannomyces graminis var. tritici in wheat roots in the absence and presence of biocontrol bacillus velezensis CC09. Front Microbiol 10:1474

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Sharma VK, Sharma S (2021) Management of spot blotch of barley: an eco-friendly approach. Australas Plant Pathol 50(4):389–401

    Article  CAS  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42

    Article  CAS  Google Scholar 

  • Kemp ND, Vaughan MM, McCormick SP, Brown JA, Bakker MG (2020) Sarocladium zeae is a systemic endophyte of wheat and an effective biocontrol agent against Fusarium head blight. Biol Control 149:104329

    Article  CAS  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  CAS  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalska J, Tyburski J, Krzymińska J, Jakubowska M (2021) Effects of seed treatment with mustard meal in control of fusarium culmorum Sacc. and the growth of common wheat (Triticum aestivum ssp. vulgare). Eur J Plant Pathol 159(2):327–338

    Article  CAS  Google Scholar 

  • Kristoffersen R, Jørgensen LN, Eriksen LB, Nielsen GC, Kiær LP (2020) Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials. Field Crops Res 249:107696

    Article  Google Scholar 

  • Kumar G, Rashid M, Teli B, Bajpai R, Nanda S, Yadav S (2021) Cultivar mixture: old but impactful plant disease management strategy. Int J Econ Plants 8:113–119

    Google Scholar 

  • Kwak Y-S, Weller DM (2013) Take-all of wheat and natural disease suppression: a review. Plant Pathol J 29(2):125–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak Y-S, Bonsall RF, Okubara PA, Paulitz TC, Thomashow LS, Weller DM (2012) Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biol Biochem 54:48–56

    Article  CAS  Google Scholar 

  • Lee HY, Byeon Y, Back K (2014) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res 57(3):262–268

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Byeon Y, Tan D-X, Reiter RJ, Back K (2015) Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58(3):291–299

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Lorsbach BA, Sparks TC, Cicchillo RM, Garizi NV, Hahn DR, Meyer KG (2019) Natural products: a strategic lead generation approach in crop protection discovery. Pest Manag Sci 75(9):2301–2309

    CAS  PubMed  Google Scholar 

  • Lu P, Gilardi G, Gullino ML, Garibaldi A (2010) Biofumigation with brassica plants and its effect on the inoculum potential of Fusarium yellows of brassica crops. Eur J Plant Pathol 126(3):387–402

    Article  Google Scholar 

  • Luo K, Jung S, Park K-H, Kim Y-R (2018) Microbial biosynthesis of silver nanoparticles in different culture media. J Agric Food Chem 66(4):957–962

    Article  CAS  PubMed  Google Scholar 

  • Madhavi Gopireddy B, Gali UD, Kotamraju VKK, Babu Tatinaeni R, Naidu CM (2019) Compatibility potential of brassica species and mustard seed meal with Pseudomonas fluorescens for biological control of soilborne plant diseases. In: Sayyed RZ, Reddy MS, Antonius S (eds) Plant growth promoting rhizobacteria (PGPR): prospects for sustainable agriculture. Springer, Singapore, pp 217–231

    Chapter  Google Scholar 

  • Magar PB, Baidya S, Koju R, Adhikary S (2020) In-vitro evaluation of botanicals and fungicides against Bipolaris sorokiniana, causing spot blotch of wheat. J Agric Nat Resour 3(2):296–305

    Article  Google Scholar 

  • Mahmoudi Z, Taliei F, Ahangar L, Kheyrgoo M (2021) Assessment of salicylic acid-induced resistance against Septoria tritici blotch disease on wheat using real-time PCR. JCP 10(1):151–165

    Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25(3):235–265

    Article  CAS  Google Scholar 

  • Matzen N, Ravn Jørgensen J, Holst N, Nistrup Jørgensen L (2019) Grain quality in wheat—impact of disease management. Eur J Agron 103:152–164

    Article  Google Scholar 

  • Mehta YR (2014a) Pillars of integrated disease management. In: Mehta YR (ed) Wheat diseases and their management. Springer, Cham, pp 17–63

    Google Scholar 

  • Mehta YR (2014b) Wheat and wheat production constraints. In: Mehta YR (ed) Wheat diseases and their management. Springer, Cham, pp 1–16

    Google Scholar 

  • Mejri S, Magnin-Robert M, Randoux B, Ghinet A, Halama P, Siah A, Reignault P (2020) Saccharin provides protection and activates defense mechanisms in wheat against the hemibiotrophic pathogen Zymoseptoria tritici. Plant Dis 105(4):780–786

    Article  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  PubMed  PubMed Central  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357

    Article  CAS  PubMed  Google Scholar 

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S (2020) Melatonin and its protective role against biotic stress impacts on plants. Biomol Ther 10(1):54

    CAS  Google Scholar 

  • Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40(1):381–410

    Article  CAS  PubMed  Google Scholar 

  • Naz R, Bano A, Wilson NL, Guest D, Roberts TH (2014) Pathogenesis-related protein expression in the apoplast of wheat leaves protected against leaf rust following application of plant extracts. Phytopathology 104(9):933–944

    Article  CAS  PubMed  Google Scholar 

  • Naz R, Nosheen A, Yasmin H, Bano A, Keyani R (2018) Botanical-chemical formulations enhanced yield and protection against Bipolaris sorokiniana in wheat by inducing the expression of pathogenesis-related proteins. PLoS One 13(4):e0196194

    Article  PubMed  PubMed Central  Google Scholar 

  • Partila AM (2019) Bioproduction of silver nanoparticles and its potential applications in agriculture. In: Panpatte DG, Jhala YK (eds) Nanotechnology for agriculture: advances for sustainable agriculture. Springer, Singapore, pp 19–36

    Chapter  Google Scholar 

  • Perelló AE, Noll U, Slusarenko AJ (2013) In vitro efficacy of garlic extract to control fungal pathogens of wheat. J Med Plants Res 7(119):1809–1817

    Google Scholar 

  • Rai-Kalal P, Tomar RS, Jajoo A (2021) Seed nanopriming by silicon oxide improves drought stress alleviation potential in wheat plants. Funct Plant Biol 48(9):905–915

    Article  CAS  PubMed  Google Scholar 

  • Saberi-Riseh R, Moradi-Pour M, Mohammadinejad R, Thakur VK (2021) Biopolymers for biological control of plant pathogens: advances in microencapsulation of beneficial microorganisms. Polymers 13(12):1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon S, Vittier T, Barot S, Ponge J-F, Ben-Assoula F, Lusley P (2021) Responses of Collembola communities to mixtures of wheat varieties: a trait-based approach. Pedobiologia (Jena) 87–88(150755)

    Google Scholar 

  • Santos SN, Kavamura VN, da Silva JL, de Melo IS, Andreote FD (2011) Plant growth promoter rhizobacteria in plants inhabiting harsh tropical environments and its role in agricultural improvements. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 251–272

    Google Scholar 

  • Satti SH, Raja NI, Javed B, Akram A, Mashwani Z-u-R, Ahmad MS, Ikram M (2021) Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS One 16(2):e0246880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabana YM, Abdalla ME, Shahin AA, El-Sawy MM, Draz IS, Youssif AW (2017) Efficacy of plant extracts in controlling wheat leaf rust disease caused by Puccinia triticina. Egypt J Basic Appl Sci 4(1):67–73

    Google Scholar 

  • Smolińska U, Kowalska B (2018) Biological control of the soil-borne fungal pathogen sclerotinia sclerotiorum –– a review. J Plant Pathol 100(1):1–12

    Article  Google Scholar 

  • Sood G, Kaushal R (2021) Plant growth promoting rhizobacteria for crop health in wheat-maize cropping systems in Northwest Himalayas. In: Kaushal M, Prasad R (eds) Microbial biotechnology in crop protection. Springer, Singapore, pp 269–287

    Google Scholar 

  • Spagnoletti F, Carmona M, Gómez NET, Chiocchio V, Lavado RS (2017) Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Appl Soil Ecol 121:41–47

    Article  Google Scholar 

  • Spagnoletti FN, Leiva M, Chiocchio V, Lavado RS (2018) Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. J Plant Nutr Soil Sci 181(6):855–860

    Article  CAS  Google Scholar 

  • Spagnoletti FN, Carmona M, Balestrasse K, Chiocchio V, Giacometti R, Lavado RS (2021) The arbuscular mycorrhizal fungus Rhizophagus intraradices reduces the root rot caused by fusarium pseudograminearum in wheat. Rhizosphere 19:100369

    Article  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. PNAS 108(50):20260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa-Ogaz AL, Muñoz-Castellanos LN, Nevárez-Moorillón GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs, pp 305–309

    Google Scholar 

  • Umetsu N, Shirai Y (2020) Development of novel pesticides in the 21st century. J Pestic Sci 45(2):54–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vechet L, Burketova L, Sindelarova M (2009) A comparative study of the efficiency of several sources of induced resistance to powdery mildew (Blumeria graminis f. sp. tritici) in wheat under field conditions. Crop Protect 28(2):151–154

    Article  Google Scholar 

  • Vidal T, Boixel A-L, Durand B, de Vallavieille-Pope C, Huber L, Saint-Jean S (2017) Reduction of fungal disease spread in cultivar mixtures: impact of canopy architecture on rain-splash dispersal and on crop microclimate. Agric For Meteorol 246:154–161

    Article  Google Scholar 

  • Vidal T, Saint-Jean S, Lusley P, Leconte M, Ben Krima S, Boixel A-L, Wheatamix C, de Vallavieille-Pope C (2020) Cultivar mixture effects on disease and yield remain despite diversity in wheat height and earliness. Plant Pathol 69(6):1148–1160

    Article  CAS  Google Scholar 

  • Vos CMF, De Cremer K, Cammue BPA, De Coninck B (2015) The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol 16(4):400–412

    Article  PubMed  Google Scholar 

  • Wang X, Wang C, Li Q, Zhang J, Ji C, Sui J, Liu Z, Song X, Liu X (2018) Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases. J Appl Microbiol 125(6):1868–1880

    Article  CAS  Google Scholar 

  • Wang H, Liu R, You MP, Barbetti MJ, Chen Y (2021) Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity. Microorganisms 9(9):1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie D, Cai X, Yang C, Xie L, Qin G, Zhang M, Huang Y, Gong G, Chang X, Chen H (2021) Studies on the control effect of Bacillus subtilis on wheat powdery mildew. Pest Manag Sci 77(10):4375–4382

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Xu L, Deng X, Goodwin PH, Xia M, Zhang J, Wang Q, Sun R, Pan Y, Wu C, Yang L (2021) Biological control of take-all and growth promotion in wheat by Pseudomonas chlororaphis YB-10. Pathogens 10(7):903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M-M, Wen S-S, Mavrodi DV, Mavrodi OV, von Wettstein D, Thomashow LS, Guo J-H, Weller DM (2014) Biological control of wheat root diseases by the CLP-producing strain pseudomonas fluorescens HC1-07. Phytopathology 104(3):248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li Y, Zhu J-K (2018) Developing naturally stress-resistant crops for a sustainable agriculture. Nat Plants 4(12):989–996

    Article  PubMed  Google Scholar 

  • Zhang ET, Zhang H, Tang W (2021) Transcriptomic analysis of wheat seedling responses to the systemic acquired resistance inducer N-hydroxypipecolic acid. Front Microbiol 12:621336

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Chen L, Gu P, Zhan X, Zhang Y, Hou C, Wu Z, Wu YF, Wang QC (2019) Exogenous application of melatonin improves plant resistance to virus infection. Plant Pathol 68(7):1287–1295

    Article  CAS  Google Scholar 

  • Ziedan E-SH (2022) A review of the efficacy of biofumigation agents in the control of soil-borne plant diseases. J Plant Prot Res 62(1):1–11

    CAS  Google Scholar 

  • Župunski V, Jevtić R, Lalošević M, Jocković B, Župunski L, Skenderović N (2021) Effect of cultivation practices on diversity in susceptibility reactions of winter wheat genotypes to fusarium head blight. Eur J Agron 125:126250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almoneafy, A.A., Kakar, K.U., Nawaz, Z., Alameri, A.A., El-Zumair, M.A.A. (2022). Economic and Eco-friendly Alternatives for the Efficient and Safe Management of Wheat Diseases. In: Abd-Elsalam, K.A., Mohamed, H.I. (eds) Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-3120-8_10

Download citation

Publish with us

Policies and ethics