Skip to main content

Defect Energy Calculations of Nickel, Copper and Aluminium (and Their Alloys): Molecular Dynamics Approach

  • Chapter
  • First Online:
Forcefields for Atomistic-Scale Simulations: Materials and Applications

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 99))

Abstract

Stacking faults are defined as regions present in the crystal where the normal sequence of stacking is disturbed. This takes place around a localized area. These defects come under the planar defect. An important role is played by these defects in deciding the characteristic properties of face-centered cubic (FCC) metals and alloys, which are close-packed. The vacancy formation energy can be defined as the change in energy, which takes place when the breaking of the bond takes place between one atom and its ligands and the formation of new bonds of atoms with ligands. Interstitial defects are the point type defect. In this type of defect, a site that is normally not occupied is occupied by an atom of the same or different type. Nickel is a pure FCC metal, and its stacking fault energy (\(\gamma )\) ranges from 79 to 415 mJ m−2. When we remove atoms from crystalline sites, vacancy is formed. Various loading conditions were used for studying the stacking fault energy of FCC metals. Density functional theory (DFT) based on first principle calculations and the embedded atom model (EAM) were used for calculating the generalized stacking fault energy of nickel, copper and aluminium. The super cell approximation based on orbital-free DFT was used for calculating the formation energies of vacancies. Ni-based super alloys are gaining wide popularity because they have excellent strength and creep resistance. This chapter reports on the work done by researchers on evaluating various defect energies of nickel, copper and aluminium through computational techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smallman, R.E.: Modern Physical Metallurgy. Elsevier (2016)

    Google Scholar 

  2. Chetty, N., Weinert, M.: Stacking faults in magnesium. Phys. Rev. B 56(17), 10844 (1997)

    Article  CAS  Google Scholar 

  3. Wang, Z.Y., Han, D., Li, X.W.: Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys. Mater. Sci. Eng. A 679, 484–492 (2017)

    Article  CAS  Google Scholar 

  4. Weidner, A., Man, J., Skrotzki, W., Polák, J.: Slip localization and dislocation structure at early stages of fatigue damage in austenitic stainless steel (316L). ICF12, Ottawa, 2013 (2009)

    Google Scholar 

  5. Dou, Y., Luo, H., Jiang, Y., Tang, X.: Effects of alloying elements on the stacking fault energies of Ni58Cr32Fe10 alloys: a first-principle study. Metals 9(11), 1163 (2019)

    Article  CAS  Google Scholar 

  6. Kannan, V.C., Thomas, G.: Dislocation climb and determination of stacking-fault energies in Al and Al-1% Mg. J. Appl. Phys. 37(6), 2363–2370 (1966)

    Article  CAS  Google Scholar 

  7. Dobson, P.S., Goodhew, P.J., Smallman, R.E.: Climb kinetics of dislocation loops in aluminium. Phil. Mag. 16(139), 9–22 (1967)

    Article  CAS  Google Scholar 

  8. Thornton, P.R., Mitchell, T.E., Hirsch, P.B.: The dependence of cross-slip on stacking-fault energy in face-centred cubic metals and alloys. Phil. Mag. 7(80), 1349–1369 (1962)

    Article  CAS  Google Scholar 

  9. Dillamore, I.L., Smallman, R.E.: The stacking-fault energy of FCC metals. Phil. Mag. 12(115), 191–193 (1965)

    Article  CAS  Google Scholar 

  10. Kim, H.S., Cook, J.B., Lin, H., Ko, J.S., Tolbert, S.H., Ozolins, V., Dunn, B.: Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3–x. Nat. Mater. 16(4), 454–460 (2017)

    Article  CAS  Google Scholar 

  11. Long, S.O., Powell, A.V., Vaqueiro, P., Hull, S.: High thermoelectric performance of bornite through control of the Cu (II) content and vacancy concentration. Chem. Mater. 30(2), 456–464 (2018)

    Article  CAS  Google Scholar 

  12. Schuler, T., Barouh, C., Nastar, M., Fu, C.C.: Equilibrium vacancy concentration driven by undetectable impurities. Phys. Rev. Lett. 115(1), 015501 (2015)

    Article  CAS  Google Scholar 

  13. Sun, Z., Zhou, J., Pan, Y., Song, Z., Mao, H.K., Ahuja, R.: Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material. Proc. Natl. Acad. Sci. 108(26), 10410–10414 (2011)

    Article  CAS  Google Scholar 

  14. He, S., Zhu, L., Zhou, J., Sun, Z.: Metastable stacking-polymorphism in Ge2Sb2Te5. Inorg. Chem. 56(19), 11990–11997 (2017)

    Article  CAS  Google Scholar 

  15. Cheng, Y., Zhu, L., Wang, G., Zhou, J., Elliott, S.R., Sun, Z.: Vacancy formation energy and its connection with bonding environment in solid: a high-throughput calculation and machine learning study. Comput. Mater. Sci. 183, 109803 (2020)

    Article  CAS  Google Scholar 

  16. Ehrhart, P.: Atomic defects in metals. Landolt-Bornstein, New Series (1991)

    Google Scholar 

  17. Bandyopadhyay, A.K., Sen, S.K.: Calculation of self‐interstitial formation energy (both split and non‐split) in noble metals. Physica Status Solidi (b) 157(2), 519–530 (1990)

    Google Scholar 

  18. Carter, C.B., Holmes, S.M.: The stacking-fault energy of nickel. Philos. Mag. J. Theor. Exp. Appl. Phys. 35(5), 1161–1172 (1977)

    CAS  Google Scholar 

  19. Thornton, P.R., Hirsch, P.B.: The effect of stacking fault energy on low temperature creep in pure metals. Phil. Mag. 3(31), 738–761 (1958)

    Article  CAS  Google Scholar 

  20. Howie, A., Swann, P.R.: Direct measurements of stacking-fault energies from observations of dislocation nodes. Phil. Mag. 6(70), 1215–1226 (1961)

    Article  CAS  Google Scholar 

  21. Thomas, G.: Electron microscopy and strength of crystals (1963)

    Google Scholar 

  22. Häussermann, F., Wilkens, M.: Bestimmung der Stapelfehlerenergie kubisch‐flächenzentrierter Metalle aus der Analyse des elektronenmikroskopischen Beugungskontrastes von Stapelfehlerdipolen. Physica Status Solidi (b), 18(2), 609–624 (1966)

    Google Scholar 

  23. J⊘ssang, T., Hirth, J.P.: The energies of stacking-fault teirahedra in fcc metals. Philos. Mag. 13(124), 657–670 (1966)

    Google Scholar 

  24. Clarebrough, L.M., Humble, P., Loretto, M.H.: Faulted defects and stacking-fault energy. Can. J. Phys. 45(2), 1135–1146 (1967)

    Article  CAS  Google Scholar 

  25. Humble, P., Loretto, M.H., Clarebrough, L.M.: The nature of defects in quenched nickel. Phil. Mag. 15(134), 297–303 (1967)

    Article  CAS  Google Scholar 

  26. Beeston, B.E.P., Dillamore, I.L., Smallman, R.E.: The stacking-fault energy of some nickel-cobalt alloys. Metal Sci. J. 2(1), 12–14 (1968)

    Article  CAS  Google Scholar 

  27. Forwood, C.T., Humble, P.: Dislocation dipoles in elastically anisotropic crystals. Aust. J. Phys. 23(5), 697–718 (1970)

    Article  CAS  Google Scholar 

  28. Sastry, D.H., Tangri, K.: Dislocation mechanisms for plastic flow of nickel in the temperature range 4.2–1200 K. Philos. Mag. J. Theoret. Exp. Appl. Phys. 32(3), 513–525 (1975)

    Google Scholar 

  29. Wolff, J., Franz, M., Kluin, J.E., Schmid, D.: Vacancy formation in nickel and α-nickel-carbon alloy. Acta Mater. 45(11), 4759–4764 (1997)

    Article  CAS  Google Scholar 

  30. Lynn, K.G., Snead, Jr., C.L., Hurst, J.J.: Positron lifetime studies of pure Ni from 4.2 to 1700K. J. Phys. F Metal Phys. 10(8), 1753 (1980)

    Google Scholar 

  31. Dlubek, G., Brümmer, O., Meyendorf, N.: A study of mono and divacancies in Cu and Au by positron annihilation. Appl. Phys. 13(1), 67–70 (1977)

    Article  CAS  Google Scholar 

  32. Nanao, S., Kuribayashi, K., Tanigawa, S., Doyama, M.: Studies of defects at thermal equilibrium and melting in Cu and Ni by positron annihilation. J. Phys. F Met. Phys. 7(8), 1403 (1977)

    Article  CAS  Google Scholar 

  33. Matter, H., Winter, J., Triftshäuser, W.: Phase transformations and vacancy formation energies of transition metals by positron annihilation. Appl. Phys. 20(2), 135–140 (1979)

    Article  CAS  Google Scholar 

  34. Campbell, J.L., Schulte, C.S., Jackman, J.A.: Temperature dependence of positron trapping in silver and nickel. J. Phys. F Met. Phys. 7(10), 1985 (1977)

    Article  CAS  Google Scholar 

  35. Maier, K., Peo, M., Saile, B., Schaefer, H.E., Seeger, A.: High–temperature positron annihilation and vacancy formation in refractory metals. Philos. Mag. A 40(5), 701–728 (1979)

    Article  CAS  Google Scholar 

  36. Siegel, R.W.: Positron Annihilation, ed. by P.G. Coleman, S.C. Sharma, L.M. Diana (1982)

    Google Scholar 

  37. Klemradt, U., Drittler, B., Hoshino, T., Zeller, R., Dederichs, P.H., Stefanou, N.: Vacancy-solute interactions in Cu, Ni, Ag, and Pd. Phys. Rev. B 43(12), 9487 (1991)

    Article  CAS  Google Scholar 

  38. Dederichs, P.H., Hoshino, T., Drittler, B., Abraham, K., Zeller, R.: Total-energy calculations for point defects in metals. Physica B 172(1–2), 203–209 (1991)

    Article  CAS  Google Scholar 

  39. Mahmoud, S., Trochet, M., Restrepo, O.A., Mousseau, N.: Study of point defects diffusion in nickel using kinetic activation-relaxation technique. Acta Mater. 144, 679–690 (2018)

    Article  CAS  Google Scholar 

  40. Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33(12), 7983 (1986)

    Article  CAS  Google Scholar 

  41. Baskes, M.I.: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50(2), 152–158 (1997)

    Article  CAS  Google Scholar 

  42. Lee, B.J., Shim, J.H., Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbour modified embedded atom method. Phys. Rev. B 68(14), 144112 (2003)

    Article  CAS  Google Scholar 

  43. Tucker, J.D., Allen, T.R., Morgan, D.: Ab initio defect properties for modeling radiation-induced segregation in Fe-Ni-Cr alloys. In: Proceedings of International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, 13th, Whistler, BC, Canada, vol. 23, pp 1004–1014 (2007)

    Google Scholar 

  44. Branicio, P.S., Zhang, J.Y., Srolovitz, D.J.: Effect of strain on the stacking fault energy of copper: a first-principles study. Phys. Rev. B 88(6), 064104 (2013)

    Article  CAS  Google Scholar 

  45. Cotterill, R.M.J., Doyama, M.: Energy and atomic configuration of complete and dissociated dislocations. I. Edge dislocation in an fcc metal. Phys. Rev. 145(2), 465 (1966)

    Google Scholar 

  46. Schweizer, S., Elsässer, C., Hummler, K., Fähnle, M.: Ab initio calculation of stacking-fault energies in noble metals. Phys. Rev. B 46(21), 14270 (1992)

    Article  CAS  Google Scholar 

  47. Rosengaard, N.M., Skriver, H.L.: Calculated stacking-fault energies of elemental metals. Phys. Rev. B 47(19), 12865 (1993)

    Article  CAS  Google Scholar 

  48. Heino, P., Perondi, L., Kaski, K., Ristolainen, E.: Stacking-fault energy of copper from molecular-dynamics simulations. Phys. Rev. B 60(21), 14625 (1999)

    Article  CAS  Google Scholar 

  49. Ogata, S., Li, J., Yip, S.: Ideal pure shear strength of aluminum and copper. Science 298(5594), 807–811 (2002)

    Article  CAS  Google Scholar 

  50. Qi, Y., Mishra, R.K.: Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum. Phys. Rev. B 75(22), 224105 (2007)

    Article  CAS  Google Scholar 

  51. Fullman, R.L.: Interfacial free energy of coherent twin boundaries in copper. J. Appl. Phys. 22(4), 448–455 (1951)

    Article  CAS  Google Scholar 

  52. Peissker, E.: Critical stress for cross slip and stacking fault energies of copper base mixed crystals. Fiz Tverd Tela 13(4), 419–431 (1965)

    CAS  Google Scholar 

  53. Stobbs, W.M., Sworn, C.H.: The weak beam technique as applied to the determination of the stacking-fault energy of copper. Phil. Mag. 24(192), 1365–1381 (1971)

    Article  CAS  Google Scholar 

  54. Korzhavyi, P.A., Abrikosov, I.A., Johansson, B., Ruban, A.V., Skriver, H.L.: First-principles calculations of the vacancy formation energy in transition and noble metals. Phys. Rev. B 59(18), 11693 (1999)

    Article  CAS  Google Scholar 

  55. Lam, N.Q., Dagens, L., Doan, N.V.: Calculations of the properties of self-interstitials and vacancies in the face-centred cubic metals Cu, Ag and Au. J. Phys. F Met. Phys. 13(12), 2503 (1983)

    Article  CAS  Google Scholar 

  56. Huntington, H.B.: Mobility of interstitial atoms in a face-centered metal. Phys. Rev. 91(5), 1092 (1953)

    Article  CAS  Google Scholar 

  57. Schober, H.R., Zeller, R.: Structure and dynamics of multiple interstitials in FCC metals. J. Nucl. Mater. 69, 341–349 (1978)

    Article  Google Scholar 

  58. Lu, G., Kioussis, N., Bulatov, V.V., Kaxiras, E.: Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62(5), 3099 (2000)

    Article  CAS  Google Scholar 

  59. Qiu, R., Lu, H., Ao, B., Huang, L., Tang, T., Chen, P.: Energetics of point defects in aluminum via orbital-free density functional theory (2016). arXiv:1611.07631

  60. Wang, Y.A., Govind, N., Carter, E.A.: Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys. Rev. B 60(24), 16350 (1999)

    Article  CAS  Google Scholar 

  61. Ho, G., Ong, M.T., Caspersen, K.J., Carter, E.A.: Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory. Phys. Chem. Chem. Phys. 9(36), 4951–4966 (2007)

    Article  CAS  Google Scholar 

  62. Chetty, N., Weinert, M., Rahman, T.S., Davenport, J.W.: Vacancies and impurities in aluminum and magnesium. Phys. Rev. B 52(9), 6313 (1995)

    Article  CAS  Google Scholar 

  63. Turner, D.E., Zhu, Z.Z., Chan, C.T., Ho, K.M.: Energetics of vacancy and substitutional impurities in aluminum bulk and clusters. Phys. Rev. B 55(20), 13842 (1997)

    Article  CAS  Google Scholar 

  64. Carling, K., Wahnström, G., Mattsson, T.R., Mattsson, A.E., Sandberg, N., Grimvall, G.: Vacancies in metals: from first-principles calculations to experimental data. Phys. Rev. Lett. 85(18), 3862 (2000)

    Article  CAS  Google Scholar 

  65. Baskes, M.I., Asta, M., Srinivasan, S.G.: Determining the range of forces in empirical many-body potentials using first-principles calculations. Philos. Mag. A 81(4), 991–1008 (2001)

    Article  CAS  Google Scholar 

  66. Carling, K.M., Wahnström, G., Mattsson, T.R., Sandberg, N., Grimvall, G.: Vacancy concentration in Al from combined first-principles and model potential calculations. Phys. Rev. B 67(5), 054101 (2003)

    Article  CAS  Google Scholar 

  67. Uesugi, T., Kohyama, M., Higashi, K.: Ab initio study on divacancy binding energies in aluminum and magnesium. Phys. Rev. B 68(18), 184103 (2003)

    Article  CAS  Google Scholar 

  68. Lu, G., Kaxiras, E.: Hydrogen embrittlement of aluminum: the crucial role of vacancies. Phys. Rev. Lett. 94(15), 155501 (2005)

    Article  CAS  Google Scholar 

  69. Iyer, M., Gavini, V., Pollock, T.M.: Energetics and nucleation of point defects in aluminum under extreme tensile hydrostatic stresses. Phys. Rev. B 89(1), 014108 (2014)

    Article  CAS  Google Scholar 

  70. Gavini, V., Bhattacharya, K., Ortiz, M.: Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation. J. Mech. Phys. Solids 55(4), 697–718 (2007)

    Article  CAS  Google Scholar 

  71. Radhakrishnan, B., Gavini, V.: Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory. Phys. Rev. B 82(9), 094117 (2010)

    Article  CAS  Google Scholar 

  72. Erhart, P., Jung, P., Schult, H., Ullmaier, H.: Atomic Defects in Metals. Landolt–Börnstein Berlin, Heidelberg, New York, London, Paris (1991)

    Google Scholar 

  73. Janani, R.D., Salman, S.A., Priyadharshini, K.P., Karthik, V.: Effect of composition on the stacking fault energy of copper-nickel alloys using molecular dynamics simulations. Mater. Today Proc. 39, 1796–1800 (2021)

    Article  CAS  Google Scholar 

  74. Nakajima, K., Numakura, K.: Effect of solute atoms on stacking faults Cu-Ni and Cu-Mn systems. Phil. Mag. 12(116), 361–368 (1965)

    Article  CAS  Google Scholar 

  75. Zhang, X., Sluiter, M.H.: Ab initio prediction of vacancy properties in concentrated alloys: the case of fcc Cu-Ni. Phys. Rev. B 91(17), 174107 (2015)

    Article  CAS  Google Scholar 

  76. Glensk, A., Grabowski, B., Hickel, T., Neugebauer, J.: Breakdown of the Arrhenius law in describing vacancy formation energies: the importance of local anharmonicity revealed by ab initio thermodynamics. Phys. Rev. X 4(1), 011018 (2014)

    CAS  Google Scholar 

  77. Lomer, W.M.: Vacancies and Other Point Defects in Metals and Alloys. Institute of Metals, London (1958)

    Google Scholar 

  78. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  Google Scholar 

  79. Delczeg, L., Delczeg-Czirjak, E.K., Johansson, B., Vitos, L.: Assessing common density functional approximations for the ab initio description of monovacancies in metals. Phys. Rev. B 80(20), 205121 (2009)

    Article  CAS  Google Scholar 

  80. Nazarov, R., Hickel, T., Neugebauer, J.: Vacancy formation energies in fcc metals: influence of exchange-correlation functionals and correction schemes. Phys. Rev. B 85(14), 144118 (2012)

    Article  CAS  Google Scholar 

  81. Armiento, R., Mattsson, A.E.: Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B 72(8), 085108 (2005)

    Article  CAS  Google Scholar 

  82. Ehrhart, P., Robrock, K.H., Schober, H.R.: Basic defects in metals. In: Modern Problems in Condensed Matter Sciences, vol. 13, pp. 3–115. Elsevier (1986)

    Google Scholar 

  83. Schaefer, H.E.: Investigation of thermal equilibrium vacancies in metals by positron annihilation. Physica Status Solidi A Appl. Res. 102(1), 47–65 (1987)

    Google Scholar 

  84. Megchiche, E.H., Pérusin, S., Barthelat, J.C., Mijoule, C.: Density functional calculations of the formation and migration enthalpies of monovacancies in Ni: comparison of local and nonlocal approaches. Phys. Rev. B 74(6), 064111 (2006)

    Article  CAS  Google Scholar 

  85. Saka, H., Sueki, Y., Imura, T.: On the intrinsic temperature dependence of the stacking-fault energy in copper-aluminium alloys. Philos. Mag. A 37(2), 273–289 (1978)

    Article  CAS  Google Scholar 

  86. Higo, Y., Pickard, A.C., Knott, J.F.: Effects of grain size and stacking fault energy on fatigue-crack-propagation thresholds in Cu-Al aluminium alloys. Metal Sci. 15(6), 233–240 (1981)

    Article  CAS  Google Scholar 

  87. Cockayne, D.J.H., Jenkins, M.L., Ray, I.L.F.: The measurement of stacking-fault energies of pure face-centred cubic metals. Phil. Mag. 24(192), 1383–1392 (1971)

    Article  CAS  Google Scholar 

  88. Cockayne, D.J.H., Ray, I.L.F., Whelan, M.J.: Investigations of dislocation strain fields using weak beams. Phil. Mag. 20(168), 1265–1270 (1969)

    Article  CAS  Google Scholar 

  89. Gallagher, P.C.J.: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1(9), 2429–2461 (1970)

    Article  CAS  Google Scholar 

  90. Górecki, T., Górecki, C., Książek, K., Wacke, S.: Effective vacancy formation energy and the solute–vacancy binding energy in binary Cu–based alloys. Visnyk of the Lviv University, Series Khimichna 48(1), 88–94 (2007)

    Google Scholar 

  91. Sueoka, O.: Study on the vacancy formation in α-phase Cu-Al alloys by positron annihilation. J. Phys. Soc. Jpn. 39(4), 969–975 (1975)

    Article  CAS  Google Scholar 

  92. Fukushima, H., Doyama, M.: Positrons as the probe of phase transformations in Cu-Mn alloy. J. Phys. F Met. Phys. 8(2), 205 (1978)

    Article  CAS  Google Scholar 

  93. Fukushima, H., Doyama, M.: Positron trapping in the liquid and solid copper alloys. Solid State Commun. 25(11), 945–948 (1978)

    Article  CAS  Google Scholar 

  94. Vitek, V.: On the stability of stacking faults in BCC crystals. Phil. Mag. 21(174), 1275–1278 (1970)

    Article  Google Scholar 

  95. Achmad, T.L., Fu, W., Chen, H., Zhang, C., Yang, Z.G.: Effects of alloying elements concentrations and temperatures on the stacking fault energies of Co-based alloys by computational thermodynamic approach and first-principles calculations. J. Alloy. Compd. 694, 1265–1279 (2017)

    Article  CAS  Google Scholar 

  96. Wang, Y.U., Jin, Y.M., Cuitino, A.M., Khachaturyan, A.G.: Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater. 49(10), 1847–1857 (2001)

    Article  CAS  Google Scholar 

  97. Brandl, C., Derlet, P.M., Van Swygenhoven, H.: General-stacking-fault energies in highly strained metallic environments: Ab initio calculations. Phys. Rev. B 76(5), 054124 (2007)

    Article  CAS  Google Scholar 

  98. Hunter, A., Zhang, R.F., Beyerlein, I.J.: The core structure of dislocations and their relationship to the material γ-surface. J. Appl. Phys. 115(13), 134314 (2014)

    Article  CAS  Google Scholar 

  99. Hasan, H., Mlkvik, P., Haynes, P.D., Vorontsov, V.A.: Generalised stacking fault energy of Ni-Al and Co-Al-W superalloys: density-functional theory calculations. Materialia 9, 100555 (2020)

    Article  CAS  Google Scholar 

  100. Vamsi, K.V., Karthikeyan, S.: Effect of off-stoichiometry and ternary additions on planar fault energies in Ni3Al. Superalloys 2012(1), 521–530 (2012)

    Article  Google Scholar 

  101. Mryasov, O.N., Gornostyrev, Y.N., Van Schilfgaarde, M., Freeman, A.J.: Superdislocation core structure in L12 Ni3Al, Ni3Ge and Fe3Ge: Peierls-Nabarro analysis starting from ab-initio GSF energetics calculations. Acta Mater. 50(18), 4545–4554 (2002)

    Article  CAS  Google Scholar 

  102. Schoeck, G., Kohlhammer, S., Fahnle, M.: Planar dissociations and recombination energy of [110] superdislocations in Ni3Al: generalized Peierls model in combination with ab initio electron theory. Philos. Mag. Lett. 79(11), 849–857 (1999)

    Article  CAS  Google Scholar 

  103. Rao, Y., Smith, T.M., Mills, M.J., Ghazisaeidi, M.: Segregation of alloying elements to planar faults in γ’-Ni3Al. Acta Mater. 148, 173–184 (2018)

    Article  CAS  Google Scholar 

  104. Durand-Charre, M.: The microstructure of superalloys. Routledge (2017)

    Book  Google Scholar 

  105. Reed, R.C.: The Superalloys: Fundamentals and Applications. Cambridge, Cambridge University Press (2008)

    Google Scholar 

  106. Burke, K.: Perspective on density functional theory. J. Chem. Phys. 136(15), 150901 (2012)

    Article  CAS  Google Scholar 

  107. Finnis, M.: Interatomic forces in condensed matter, vol. 1. OUP Oxford (2003)

    Google Scholar 

  108. Prakash, A., Guénolé, J., Wang, J., Müller, J., Spiecker, E., Mills, M.J., Povstugar, I., Choi, P., Raabe, D., Bitzek, E.: Atom probe informed simulations of dislocation–precipitate interactions reveal the importance of local interface curvature. Acta Mater. 92, 33–45 (2015)

    Article  CAS  Google Scholar 

  109. Csányi, G., Albaret, T., Payne, M.C., De Vita, A.: “Learn on the fly”: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93(17), 175503 (2004)

    Article  CAS  Google Scholar 

  110. Bernstein, N., Kermode, J.R., Csanyi, G.: Hybrid atomistic simulation methods for materials systems. Rep. Prog. Phys. 72(2), 026501 (2009)

    Article  CAS  Google Scholar 

  111. Bianchini, F., Kermode, J.R., De Vita, A.: Modelling defects in Ni–Al with EAM and DFT calculations. Modell. Simul. Mater. Sci. Eng. 24(4), 045012 (2016)

    Article  CAS  Google Scholar 

  112. Miracle, D.B.: The physical and mechanical properties of NiAl, overview no. 104. Acta Metall. Mater. 41, 649–684 (1993)

    Article  CAS  Google Scholar 

  113. Noebe, R.D., Bowman, R.R., Nathal, M.V.: Physical and mechanical properties of the B2 compound NiAl. Int. Mater. Rev. 38(4), 193–232 (1993)

    Article  CAS  Google Scholar 

  114. Carlsson, A.E.: Cluster interactions and physical properties of Al–transition-metal alloys. Phys. Rev. B 40(2), 912 (1989)

    Article  CAS  Google Scholar 

  115. Hong, T., Freeman, A.J.: Effect of antiphase boundaries on the electronic structure and bonding character of intermetallic systems: NiAl. Phys. Rev. B 43(8), 6446 (1991)

    Article  CAS  Google Scholar 

  116. Lu, Z.W., Wei, S.H., Zunger, A.: Theory of bonding charge density in β′ NiAl. Acta Metall. Mater. 40(9), 2155–2165 (1992)

    Article  CAS  Google Scholar 

  117. Moriarty, J.A., Widom, M.: First-principles interatomic potentials for transition-metal aluminides: theory and trends across the 3 d series. Phys. Rev. B 56(13), 7905 (1997)

    Article  CAS  Google Scholar 

  118. Hackenbracht, D., Kubler, J.: Electronic magnetic and cohesive properties of some nickel-aluminium compounds. J. Phys. F Met. Phys. 10(3), 427 (1980)

    Article  CAS  Google Scholar 

  119. Koch, J.M., Koenig, C.: First-order effect of the extension of the perturbation around vacancies in metallic compounds. Philos. Mag. B 57(4), 557–568 (1988)

    Article  CAS  Google Scholar 

  120. Schultz, P.A., Davenport, J.W.: Calculations of systematics in B2 structure 3d transition metal aluminides. J. Alloy. Compd. 197(2), 229–242 (1993)

    Article  CAS  Google Scholar 

  121. Zou, J., Fu, C.L.: Structural, electronic, and magnetic properties of 3d transition-metal aluminides with equiatomic composition. Phys. Rev. B 51(4), 2115 (1995)

    Article  CAS  Google Scholar 

  122. Botton, G.A., Guo, G.Y., Temmerman, W.M., Humphreys, C.J.: Experimental and theoretical study of the electronic structure of Fe Co, and Ni aluminides with the B2 structure. Phys. Rev. B 54(3), 1682 (1996)

    Article  CAS  Google Scholar 

  123. Muller, D.A., Singh, D.J., Silcox, J.: Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: a study of nickel aluminum alloys. Phys. Rev. B 57(14), 8181 (1998)

    Article  CAS  Google Scholar 

  124. Lu, Z.W., Wei, S.H., Zunger, A., Frota-Pessoa, S., Ferreira, L.G.: First-principles statistical mechanics of structural stability of intermetallic compounds. Phys. Rev. B 44(2), 512 (1991)

    Article  CAS  Google Scholar 

  125. Burton, B.P., Osburn, J.E., Pasturel, A.: Theoretical calculations of the NiAl-NiTi phase diagram based on first-principles linear-muffin-tin-orbital and full-potential linearly-augmented plane-wave cohesive-energy calculations. Phys. Rev. B 45(14), 7677 (1992)

    Article  CAS  Google Scholar 

  126. Pasturel, A., Colinet, C., Paxton, A.T., Van Schilfgaarde, M.: First-principles determination of the Ni-Al phase diagram. J. Phys. Condens. Matter 4(4), 945 (1992)

    CAS  Google Scholar 

  127. Mehl, M.J., Klein, B.M., Papaconstantopoulos, D.A.: Intermetallic compounds, vol. 1, Principles, ed. by J.H. Westbrook, R.L. Fleischer

    Google Scholar 

  128. Rzyman, K., Moser, Z., Watson, R.E., Weinert, M.: Enthalpies of formation of AlNi: experiment versus theory. J. Phase Equilibria 19(2), 106–111 (1998)

    Article  CAS  Google Scholar 

  129. Fu, C.L., Ye, Y.Y., Yoo, M.H., Ho, K.M.: Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl. Phys. Rev. B 48(9), 6712 (1993)

    Article  CAS  Google Scholar 

  130. Fu, C.L.: Origin of ordering in B2-type transition-metal aluminides: comparative study of the defect properties of PdAl, NiAl, and FeAl. Phys. Rev. B 52(5), 3151 (1995)

    Article  CAS  Google Scholar 

  131. Farnsworth, H.E., Tuul, J.: Influence of lattice-defect density on the chemisorption and oxide formation on a clean (100) crystal face of Nickel as determined by low-energy electron diffraction. J. Phys. Chem. Solids 9(1), 48–56 (1959)

    Article  CAS  Google Scholar 

  132. Medvedeva, N.I., Mryasov, O.N., Gornostyrev, Y.N., Novikov, D.L., Freeman, A.J.: First-principles total-energy calculations for planar shear and cleavage decohesion processes in B2-ordered NiAl and FeAl. Phys. Rev. B 54(19), 13506 (1996)

    Article  CAS  Google Scholar 

  133. Medvedeva, N.I., Gornostyrev, Y.N., Novikov, D.L., Mryasov, O.N., Freeman, A.J.: Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl. Acta Mater. 46(10), 3433–3442 (1998)

    Article  CAS  Google Scholar 

  134. Bester, G., Meyer, B., Fähnle, M.: Atomic defects in the ordered compound B2-CoAl: a combination of ab initio electron theory and statistical mechanics. Phys. Rev. B 60(21), 14492 (1999)

    Article  CAS  Google Scholar 

  135. Peterman, D.J., Rosei, R., Lynch, D.W., Moruzzi, V.L.: Optical properties and electronic structure of β′− NiAl. Phys. Rev. B 21(12), 5505 (1980)

    Article  CAS  Google Scholar 

  136. Egorushkin, V.E., Kul’mentyev, A.I., Rubin, P.E.: Electron structure and optical properties of Ni-Al. Solid State Commun. 57(10), 821–823 (1986)

    Article  CAS  Google Scholar 

  137. Knab, D., Koenig, C.: Optical properties of TAl compounds (T= Fe Co, Ni) and CoGa: role of the 3d semi-core states of Ga. J. Phys. Condens. Matter 2(2), 465 (1990)

    Article  CAS  Google Scholar 

  138. Kim, K.J., Harmon, B.N., Lynch, D.W.: Calculation of the optical spectra of β’-NiAl and CoAl. Phys. Rev. B 43(3), 1948 (1991)

    Article  CAS  Google Scholar 

  139. Farberovich, O.V., Vlasov, S.V., Portnoi, K.I., Lozovoi, A.Y.: Electronic structure of NiAl by the FLAPW-method. Physica B 182(3), 267–277 (1992)

    Article  CAS  Google Scholar 

  140. Demkowicz, M.J., Bhattacharyya, D., Usov, I., Wang, Y.Q., Nastasi, M., Misra, A.: The effect of excess atomic volume on He bubble formation at fcc–bcc interfaces. Appl. Phys. Lett. 97(16), 161903 (2010)

    Article  CAS  Google Scholar 

  141. Taylor, A., Doyle, N.J.: Further studies on the nickel–aluminium system. I. β-NiAl and δ-Ni2Al3 phase fields. J. Appl. Crystallogr. 5(3), 201–209 (1972)

    Google Scholar 

  142. Van Sande, M., Van Landuyt, J., Avalos-Borja, M., Villaseñor, G.T., Amelinckx, S.: A reinvestigation of the γ phase in Cu-Al alloys: a new long-period superstructure. Mater. Sci. Eng. 46(2), 167–173 (1980)

    Article  Google Scholar 

  143. Betterton, J., Reynolds, J.: The factors affecting the formation of 21/13 electron compounds in alloys of copper and of silver. J. Inst. Metals 80(11), 609–616 (1952)

    Google Scholar 

  144. Jones, H., Chako, N.: The theory of Brillouin zones and electronic states in crystals. Phys. Today 15(1), 66 (1962)

    Article  Google Scholar 

  145. Korzhavyi, P.A., Ruban, A.V., Lozovoi, A.Y., Vekilov, Y.K., Abrikosov, I.A., Johansson, B.: Constitutional and thermal point defects in B 2 NiAl. Phys. Rev. B 61(9), 6003 (2000)

    Article  CAS  Google Scholar 

  146. Smirnov, A.A.: Metallofizika Kiev 14, 3 1992 Phys. Metals 12, 377 (1993)

    Google Scholar 

  147. Cottrell, A.H.: Constitutional vacancies in NiAl. Intermetallics 3(5), 341–345 (1995)

    Article  CAS  Google Scholar 

  148. Cottrell, A.H.: Vacancies in FeAl and NiAl. Intermetallics 5(6), 467–469 (1997)

    Article  CAS  Google Scholar 

  149. Verma, A., Parashar, A., Packirisamy, M.: Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. Wiley Interdisc. Rev. Comput. Mol. Sci. 8(3), e1346 (2018)

    Article  CAS  Google Scholar 

  150. Verma, A., Singh, V.K., Verma, S.K., Sharma, A.: Human hair: a biodegradable composite fiber–a review. Int. J. Waste Res. 6(206), 2 (2016)

    Google Scholar 

  151. Verma, A., Singh, V.K.: Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. J. Test. Eval. 47(2), 1193–1215 (2019)

    Article  CAS  Google Scholar 

  152. Verma, A., Parashar, A.: Structural and chemical insights into thermal transport for strained functionalised graphene: a molecular dynamics study. Mater. Res. Exp. 5(11), 115605 (2018)

    Article  CAS  Google Scholar 

  153. Verma, A., Negi, P., Singh, V.K.: Experimental analysis on carbon residuum transformed epoxy resin: chicken feather fiber hybrid composite. Polym. Compos. 40(7), 2690–2699 (2019)

    Article  CAS  Google Scholar 

  154. Verma, A., Gaur, A., Singh, V.K.: Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Mater. Perform. Charact. 6(1), 500–520 (2017)

    CAS  Google Scholar 

  155. Verma, A., Parashar, A., Packirisamy, M.: Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl. Surf. Sci. 470, 1085–1092 (2019)

    Article  CAS  Google Scholar 

  156. Verma, A., Budiyal, L., Sanjay, M.R., Siengchin, S.: Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polym. Eng. Sci. 59(10), 2041–2051 (2019)

    Article  CAS  Google Scholar 

  157. Verma, A., Negi, P., Singh, V.K.: Physical and thermal characterization of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite. Adv. Civil Eng. Mater. 7(1), 538–557 (2018)

    CAS  Google Scholar 

  158. Verma, A., Negi, P., Singh, V.K.: Experimental investigation of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite: mechanical and microstructural characterization. J. Mech. Behav. Mater. 27(3–4) (2018)

    Google Scholar 

  159. Chaurasia, A., Verma, A., Parashar, A., Mulik, R.S.: Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J. Phys. Chem. C 123(32), 20059–20070 (2019)

    Article  CAS  Google Scholar 

  160. Jain, N., Verma, A., Singh, V.K.: Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Mater. Res. Exp. 6(10), 105373 (2019)

    Article  CAS  Google Scholar 

  161. Verma, A., Joshi, K., Gaur, A., Singh, V.K.: Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: fabrication and experimental characterization. J. Mech. Behav. Mater. 27(5–6) (2018)

    Google Scholar 

  162. Verma, A., Kumar, R., Parashar, A.: Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach. Phys. Chem. Chem. Phys. 21(11), 6229–6237 (2019)

    Article  CAS  Google Scholar 

  163. Verma, A., Singh, V.K.: Experimental investigations on thermal properties of coconut shell particles in DAP solution for use in green composite applications. J. Mater. Sci. Eng. 5(3), 1000242 (2016)

    Google Scholar 

  164. Verma, A., Singh, V.K., Arif, M.: Study of flame retardant and mechanical properties of coconut shell particles filled composite. Res. Rev. J. Mater. Sci. 4(3), 1–5 (2016)

    Google Scholar 

  165. Verma, A., Parashar, A., Jain, N., Singh, V.K., Rangappa, S.M., Siengchin, S.: Surface modification techniques for the preparation of different novel biofibers for composites. In: Biofibers and Biopolymers for Biocomposites, pp. 1–34. Springer, Cham (2020)

    Google Scholar 

  166. Rastogi, S., Verma, A., Singh, V.K.: Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Mater. Perform. Charact. 9(1), 151–172 (2020)

    Google Scholar 

  167. Bharath, K.N., Madhu, P., Gowda, T.G., Verma, A., Sanjay, M.R., Siengchin, S.: A novel approach for development of printed circuit board from biofiber based composites. Polym. Compos. 41(11), 4550–4558 (2020)

    Article  CAS  Google Scholar 

  168. Verma, A., Jain, N., Parashar, A., Gaur, A., Sanjay, M.R., Siengchin, S.: Lifecycle assessment of thermoplastic and thermosetting bamboo composites. In: Bamboo Fiber Composites, pp. 235–246. Springer, Singapore (2021)

    Google Scholar 

  169. Singh, K., Jain, N., Verma, A., Singh, V.K., Chauhan, S.: Functionalized graphite-reinforced cross-linked poly (vinyl alcohol) nanocomposites for vibration isolator application: morphology, mechanical, and thermal assessment. Mater. Perform. Charact. 9(1), 215–230 (2020)

    Google Scholar 

  170. Verma, A., Parashar, A.: Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide. Nanotechnology 29(11), 115706 (2018)

    Article  CAS  Google Scholar 

  171. Verma, A., Parashar, A.: The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys. Chem. Chem. Phys. 19(24), 16023–16037 (2017)

    Article  CAS  Google Scholar 

  172. Verma, A., Parashar, A., Packirisamy, M.: Tailoring the failure morphology of 2D bicrystalline graphene oxide. J. Appl. Phys. 124(1), 015102 (2018)

    Article  CAS  Google Scholar 

  173. Singla, V., Verma, A., Parashar, A.: A molecular dynamics based study to estimate the point defects formation energies in graphene containing STW defects. Mater. Res. Exp. 6(1), 015606 (2018)

    Article  CAS  Google Scholar 

  174. Verma, A., Parashar, A.: Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput. Mater. Sci. 143, 15–26 (2018)

    Article  CAS  Google Scholar 

  175. Verma, A., Zhang, W., van Duin, A.C.: ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheet and water nanodroplets. Phys. Chem. Chem. Phys. 23, 10822–10834 (2021)

    Article  CAS  Google Scholar 

  176. Verma, A., Parashar, A., Packirisamy, M.: Role of chemical adatoms in fracture mechanics of graphene nanolayer. Mater. Today Proc. 11, 920–924 (2019)

    Article  CAS  Google Scholar 

  177. Verma, A., Parashar, A.: Characterization of 2D nanomaterials for energy storage. In: Recent Advances in Theoretical, Applied, Computational and Experimental Mechanics, pp. 221–226. Springer, Singapore (2020)

    Google Scholar 

  178. Verma, A., Jain, N., Parashar, A., Singh, V.K., Sanjay, M.R., Siengchin, S.: Design and modeling of lightweight polymer composite structures. In: Lightweight Polymer Composite Structures: Design and Manufacturing Techniques, pp. 193–224. Taylor & Francis Group (CRC Press), Boca Raton, Chapter 7 (2020)

    Google Scholar 

  179. Verma, A., Jain, N., Parashar, A., Singh, V.K., Sanjay, M.R., Siengchin, S.: Lightweight graphene composite materials. In: Lightweight Polymer Composite Structures: Design and Manufacturing Techniques, pp. 1–20. Taylor & Francis Group (CRC Press), Boca Raton, Chapter 1 (2020)

    Google Scholar 

  180. Verma, A., Parashar, A., Singh, S.K., Jain, N., Sanjay, M.R., Siengchin, S.: Modeling and simulation in polymer coatings. In: Polymer Coatings: Technologies and Applications, pp. 309–324. Taylor & Francis Group (CRC Press), Boca Raton, Chapter 16 (2020)

    Google Scholar 

  181. Verma, A., Jain, N., Rastogi, S., Dogra, V., Sanjay. M.R., Siengchin, S., Mansour, R.: Mechanism, anti-corrosion protection and components of anti-corrosion polymer coatings. In: Polymer Coatings: Technologies and Applications, pp. 53–66. Taylor & Francis Group (CRC Press), Boca Raton, Chapter 4 (2020)

    Google Scholar 

  182. Verma, A., Jain, N., Kalpana, Sanjay M.R., Siengchin, S., Jawaid, M.: Natural fibers based bio-phenolic composites. In: Phenolic Polymers Based Composite Materials, pp. 153–168. Springer Nature, Singapore, Chapter 10 (2020)

    Google Scholar 

  183. Bharath, K.N., Madhu, P., Gowda, T.Y., Verma, A., Sanjay, M.R., Siengchin, S.: Mechanical and chemical properties evaluation of sheep wool fiber-reinforced vinylester and polyester composites. Mater. Perform. Charact. 10(1), 99–109 (2021)

    CAS  Google Scholar 

  184. Marichelvam, M.K., Manimaran, P., Verma, A., Sanjay, M.R., Siengchin, S., Kandakodeeswaran, K., Geetha, M.: A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: an experimental approach. Polym. Compos. 42(1), 512–521 (2021)

    Article  CAS  Google Scholar 

  185. Chaudhary, A., Sharma, S., Verma, A.: Optimization of WEDM process parameters for machining of heat treated ASSAB’88 tool steel using Response surface methodology (RSM). Mater. Today Proc. (2021)

    Google Scholar 

  186. Chaudhary, A., Sharma, S., Verma, A.: WEDM machining of heat treated ASSAB ’88 tool steel: a comprehensive experimental analysis. Mater. Today Proc. (2021)

    Google Scholar 

  187. Verma, A., Singh, V.K.: Experimental characterization of modified epoxy resin assorted with almond shell particles. ESSENCE-Int. J. Environ. Rehabil. Conserv. 36

    Google Scholar 

  188. Verma, A., Samant, S.S.: Inspection of hydrodynamic lubrication in infinitely long journal bearing with oscillating journal velocity. J. Appl. Mech. Eng. 5(3), 1–7 (2016)

    Google Scholar 

  189. Verma, A., Parashar, A., Jain, N., Singh, V.K., Rangappa, S.M., Siengchin, S.: Surface modification techniques for the preparation of different novel biofibers for composites. In: Biofibers and Biopolymers for Biocomposites, pp. 1–34 (2020)

    Google Scholar 

  190. Bisht, N., Verma, A., Chauhan, S., Singh, V.K.: Effect of functionalized silicon carbide nano-particles as additive in cross-linked PVA based composites for vibration damping application. J. Vinyl Add. Tech. 27(4), 920–932 (2021)

    Article  CAS  Google Scholar 

  191. Kataria, A., Verma, A., Sanjay, M.R., Siengchin, S.: Molecular modeling of 2D graphene grain boundaries: mechanical and fracture aspects. Mater. Today Proc.

    Google Scholar 

  192. Arpitha, G.R., Verma, A., Sanjay, M.R., Siengchin, S.: Preparation and experimental investigation on mechanical and tribological performance of hemp-glass fiber reinforced laminated composites for lightweight applications. Adv. Civil Eng. Mater. 10(1), 427–439 (2021)

    CAS  Google Scholar 

  193. Deji, R., Verma, A., Kaur, N., Choudhary, B.C., Sharma, R.K.: Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon. Mater. Today Proc. (2021)

    Google Scholar 

  194. Deji, R., Verma, A., Choudhary, B.C., Sharma, R.K.: New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: a DFT approach. J. Mol. Graph. Model. (2021). https://doi.org/10.1016/j.jmgm.2021.108109

    Article  Google Scholar 

  195. Deji, R., Jyoti, R., Verma, A., Choudhary, B.C., Sharma, R.K.: A theoretical study of HCN adsorption and width effect on co-doped armchair graphene nanoribbon. Comput. Theor. Chem. 113592 (2022)

    Google Scholar 

Download references

Acknowledgements

Monetary and academic support from the University of Petroleum and Energy Studies, Dehradun, India (SEED Grant program) is highly appreciable. Akarsh Verma would also like to thank the Japan Society for the Promotion of Science (JSPS) for awarding him the JSPS postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akarsh Verma .

Editor information

Editors and Affiliations

Ethics declarations

“There are no conflicts of interest to declare by the authors.”

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaturvedi, S., Verma, A., Sethi, S.K., Ogata, S. (2022). Defect Energy Calculations of Nickel, Copper and Aluminium (and Their Alloys): Molecular Dynamics Approach. In: Verma, A., Mavinkere Rangappa, S., Ogata, S., Siengchin, S. (eds) Forcefields for Atomistic-Scale Simulations: Materials and Applications. Lecture Notes in Applied and Computational Mechanics, vol 99. Springer, Singapore. https://doi.org/10.1007/978-981-19-3092-8_8

Download citation

Publish with us

Policies and ethics