Skip to main content

Current Perspective on Atomistic Force Fields of Polymers

  • Chapter
  • First Online:
Forcefields for Atomistic-Scale Simulations: Materials and Applications

Abstract

The theoretical toolbox of polymer physics has expanded over the years, beginning from simple phenomenological theories to detailed field-theoretical and generic toy models of polymer chains. One major bottleneck of these methods relates to the issue of scale and resolution as both the structure and dynamics of a long polymer chain and the local physical and chemical interactions at the level of its repeat unit cannot be studied together. As a case in point, minor variations in the chemistry and/or arrangement of repeat units of a polymer may greatly influence the polymer behavior, which is difficult to capture using generic bead-spring models of the polymer chain. This is where atomistic simulation comes into picture. With gradual increase in computational capabilities, it is now possible, up to a reasonable extent, to simulate polymers with atomistic resolution. We present a state of the art review of the atomistic simulation of polymers with emphasis on the atomistic force fields used in these simulations. Various force fields used in atomistic simulations are described, along with a discussion of their strengths and weaknesses. This is followed by a discussion on some of the application areas where atomistic simulations have been successfully used in polymer science and an outlook on some other upcoming applications that may potentially benefit from atomistic simulations. This review should be of interest to computational researchers working on the use of atomistic simulations in polymer science and experimentalists seeking to find complementary computational tools for polymer design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The length of segment in the freely jointed chain model is called the ‘Kuhn length’, \({b}_{K}\), that is defined as twice the persistence length of the polymer chain. For an ideal chain, \(\langle {R}_{e}^{2}\rangle ={b}_{K}{N}^{2}\) where \(N\) is the number of segments (often referred as ‘Kuhn segment’). Since the persistence length is considered independent of polymer molecular weight \(M\), the same scaling \(\langle {R}_{e}^{2}\rangle \propto M\) is expected for an ideal chain. In freely rotating chain, an additional prefactor of \(\frac{1+\mathrm{cos}\theta }{1-\mathrm{cos}\theta }\) appears in the equation but the same scaling behavior with the number of segments (and molecular weight) is obtained for an ideal chain.

References

  1. Geyer, R., Jambeck, J.R., Law, K.L.: Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2021)

    Google Scholar 

  2. Porter, R.S., Johnson, J.F.: The entanglement concept in polymer systems. Chem. Rev. 66, 1–27 (1966)

    Article  Google Scholar 

  3. Watanabe, H.: Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 24, 1253–1403 (1999)

    Article  CAS  Google Scholar 

  4. Kuo, S.-W.: Hydrogen-bonding in polymer blends. J. Polym. Res. 15, 459–486 (2008)

    Article  CAS  Google Scholar 

  5. Doi, M.: Introduction to Polymer Physics. Oxford University Press (1996)

    Google Scholar 

  6. Knychała, P., Timachova, K., Banaszak, M., Balsara, N.P.: 50th anniversary perspective: phase behavior of polymer solutions and blends. Macromolecules 50, 3051–3065 (2017)

    Google Scholar 

  7. Nishio, I., Sun, S.-T., Swislow, G., Tanaka, T.: First observation of the coil–globule transition in a single polymer chain. Nature 281, 208–209 (1979)

    Google Scholar 

  8. Angell, C.A., Sichina, W.: Thermodynamics of the glass transition: empirical aspects. Ann. N. Y. Acad. Sci. 279, 53–67 (1976)

    Google Scholar 

  9. Herkt-Maetzky, C., Schelten, J.: Critical fluctuations in a binary polymer mixture. Phys. Rev. Lett. 51, 896–899 (1983)

    Google Scholar 

  10. Fredrickson, G.: The equilibrium theory of inhomogeneous polymers. In: The Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press (2007)

    Google Scholar 

  11. De Gennes, P.G.: Dynamics of entangled polymer solutions. I. The Rouse model. Macromolecules 9, 587–593 (1976)

    Google Scholar 

  12. De Gennes, P.G.: Dynamics of entangled polymer solutions II. Inclusion of hydrodynamic interactions. Macromolecules 9, 594–598 (1976)

    Google Scholar 

  13. Bruns, W., Bansal, R.: Molecular dynamics study of a single polymer chain in solution. II. Bead–spring model. J. Chem. Phys. 75, 5149–5152 (1981)

    Google Scholar 

  14. Christainsen, R.L., Bird, R.B.: Dilute solution rheology: experimental results and finitely extensible nonlinear elastic dumbbell theory. J. Nonnewton. Fluid Mech. 3, 161–177 (1977)

    Google Scholar 

  15. Ingólfsson, H.I., et al.: The power of coarse graining in biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 225–248 (2014)

    Google Scholar 

  16. Müller-Plathe, F.: Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3, 754–769 (2002)

    Google Scholar 

  17. Gartner, T.E., Jayaraman, A.: Modeling and simulations of polymers: a roadmap. Macromolecules 52, 755–786 (2019)

    Google Scholar 

  18. Salerno, K.M., Bernstein, N.: Persistence length, end-to-end distance, and structure of coarse-grained polymers. J. Chem. Theory Comput. 14, 2219–2229 (2018)

    Google Scholar 

  19. Huang, W., Ramesh, R., Jha, P.K., Larson, R.G.: A systematic coarse-grained model for methylcellulose polymers: spontaneous ring formation at elevated temperature. Macromolecules 49, acs.macromol.5b02373 (2016)

    Google Scholar 

  20. Karatrantos, A., Clarke, N., Kröger, M.: Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale: a review. Polym. Rev. 56, 385–428 (2016)

    Google Scholar 

  21. Katiyar, R.S., Jha, P.K.: Molecular simulations in drug delivery: opportunities and challenges. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 (2018)

    Google Scholar 

  22. Theodorou, D.N.: Progress and outlook in Monte Carlo simulations. Ind. Eng. Chem. Res. 49, 3047–3058 (2010)

    Google Scholar 

  23. Allinger, N.L.: Understanding molecular structure from molecular mechanics. J. Comput. Aided. Mol. Des. 25, 295–316 (2011)

    Article  CAS  Google Scholar 

  24. Dubbeldam, D., Walton, K.S., Vlugt, T.J.H., Calero, S.: Design, parameterization, and implementation of atomic force fields for adsorption in nanoporous materials. Adv. Theory Simul. 2, 1900135 (2019)

    Google Scholar 

  25. Gooneie, A., et al.: A review of multiscale computational methods in polymeric materials. Polymers (Basel) 9, 16 (2017)

    Google Scholar 

  26. Brini, E., et al.: Systematic coarse-graining methods for soft matter simulations—a review. Soft Matter 9, 2108–2119 (2013)

    Google Scholar 

  27. Frenkel, D., Smit, B. Understanding molecular simulation. Comput. Phys. 11. AIP Publishing (2002)

    Google Scholar 

  28. Salanne, M., et al.: Including many-body effects in models for ionic liquids. Theor. Chem. Acc. 131, 1143 (2012)

    Google Scholar 

  29. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press (1989)

    Google Scholar 

  30. Hansen, J.-P., Verlet, L.: Phase transitions of the Lennard-Jones system. Phys. Rev. 184, 151–161 (1969)

    Article  CAS  Google Scholar 

  31. Rottler, J.: Local electrostatics algorithm for classical molecular dynamics simulations. J. Chem. Phys. 127, 1–10 (2007)

    Article  CAS  Google Scholar 

  32. Koehl, P.: Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol. 16, 142–151 (2006)

    Article  CAS  Google Scholar 

  33. Leach, A. R.: Molecular Modelling: Principles and Applications. Pearson Education Limited (2001)

    Google Scholar 

  34. Harrison, J.A., et al.: Review of force fields and intermolecular potentials used in atomistic computational materials research. Appl. Phys. Rev. 5, 031104 (2018)

    Article  CAS  Google Scholar 

  35. Barbosa, N.S.V., Zhang, Y., Lima, E.R.A., Tavares, F.W., Maginn, E.J.: Development of an AMBER-compatible transferable force field for poly(ethylene glycol) ethers (glymes). J. Mol. Model. 23, 194 (2017)

    Article  CAS  Google Scholar 

  36. Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004)

    Article  CAS  Google Scholar 

  37. Damm, W., Frontera, A., Tirado-Rives, J., Jorgensen, W.L.: OPLS all-atom force field for carbohydrates. J. Comput. Chem. 18, 1955–1970 (1997)

    Article  CAS  Google Scholar 

  38. MacKerell, A.D., et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Google Scholar 

  39. Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)

    Google Scholar 

  40. Sun, H., et al.: COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22, 47 (2016)

    Google Scholar 

  41. Sun, H.: Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 28, 701–712 (1995)

    Google Scholar 

  42. Al-Matar, A.K., Rockstraw, D.A.: A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J. Comput. Chem. 25, 660–668 (2004)

    Article  CAS  Google Scholar 

  43. da Silva, G.C.Q., Silva, G.M., Tavares, F.W., Fleming, F.P., Horta, B.A.C.: Are all-atom any better than united-atom force fields for the description of liquid properties of alkanes? J. Mol. Model. 26, 296 (2020)

    Google Scholar 

  44. Jing, Z., et al.: Polarizable force fields for biomolecular simulations: recent advances and applications. Annu. Rev. Biophys. 48, 371–394 (2019)

    Article  CAS  Google Scholar 

  45. Katiyar, R.S., Jha, P.K.: Phase behavior of aqueous polyacrylic acid solutions using atomistic molecular dynamics simulations of model oligomers. Polymer (Guildf). 114, 266–276 (2017)

    Article  CAS  Google Scholar 

  46. Doherty, D. C., Holmes, B. N., Leung, P. & Ross, R. B. Polymerization molecular dynamics simulations. I. Cross-linked atomistic models for poly(methacrylate) networks. Comput. Theor. Polym. Sci. 8, 169–178 (1998)

    Google Scholar 

  47. Mongan, J., Case, D.A.: Biomolecular simulations at constant pH. Curr. Opin. Struct. Biol. 15, 157–163 (2005)

    Article  CAS  Google Scholar 

  48. Donnini, S., Tegeler, F., Groenhof, G., Grubmüller, H.: Constant pH molecular dynamics in explicit solvent with λ-dynamics. J. Chem. Theory Comput. 7, 1962–1978 (2011)

    Article  CAS  Google Scholar 

  49. Kowalik, M., et al.: Atomistic scale analysis of the carbonization process for C/H/O/N-based polymers with the reaxFF reactive force field. J. Phys. Chem. B 123, 5357–5367 (2019)

    Google Scholar 

  50. Onufriev, A.V., Izadi, S.: Water models for biomolecular simulations. WIREs Comput. Mol. Sci. 8, e1347 (2018)

    Google Scholar 

  51. Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)

    Google Scholar 

  52. Abascal, J.L.F., Vega, C.: A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005)

    Google Scholar 

  53. Ferguson, D.M.: Parameterization and evaluation of a flexible water model. J. Comput. Chem. 16, 501–511 (1995)

    Google Scholar 

  54. Nada, H., van der Eerden, J.P.J.M.: An intermolecular potential model for the simulation of ice and water near the melting point: a six-site model of H2O. J. Chem. Phys. 118, 7401–7413 (2003)

    Google Scholar 

  55. Mahoney, M.W., Jorgensen, W.L.: A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910–8922 (2000)

    Google Scholar 

  56. Nerenberg, P.S., Head-Gordon, T.: New developments in force fields for biomolecular simulations. Curr. Opin. Struct. Biol. 49, 129–138 (2018)

    Google Scholar 

  57. McAliley, J.H., Bruce, D.A.: Development of force field parameters for molecular simulation of polylactide. J. Chem. Theory Comput. 7, 3756–3767 (2011)

    Google Scholar 

  58. Fröhlking, T., Bernetti, M., Calonaci, N., Bussi, G.: Toward empirical force fields that match experimental observables. J. Chem. Phys. 152, 230902 (2020)

    Google Scholar 

  59. Monticelli, L., Tieleman, D.P.: Force fields for classical molecular dynamics. Biomol. Simul. 197–213 (2013)

    Google Scholar 

  60. Reith, D., Kirschner, K.N.: A modern workflow for force-field development—bridging quantum mechanics and atomistic computational models. Comput. Phys. Commun. 182, 2184–2191 (2011)

    Google Scholar 

  61. Rosi-Schwartz, B., Mitchell, G.R.: Extracting force fields for disordered polymeric materials from neutron scattering data. Polymer (Guildf). 37, 1857–1870 (1996)

    Google Scholar 

  62. Canongia Lopes, J.N., Pádua, A.A.H.: CL&P: a generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc. 131, 1129 (2012)

    Google Scholar 

  63. Satyanarayana, K.C., Bohlén, M., Lund, A., Rychwalski, R.W., Bolton, K.: Analysis of the torsion angle distribution of poly(vinylidene fluoride) in the melt. Polymer (Guildf) 53, 1109–1114 (2012)

    Google Scholar 

  64. Fang, C.-E., Tsai, Y.-C., Scheurer, C., Chiu, C.-C.: Revised atomic charges for OPLS force field model of poly(ethylene oxide): benchmarks and applications in polymer electrolyte. Polymers 13 (2021)

    Google Scholar 

  65. Vanommeslaeghe, K., Yang, M., MacKerell, A.D.: Robustness in the fitting of molecular mechanics parameters. J. Comput. Chem. 36, 1083–1101 (2015)

    Google Scholar 

  66. Hopfinger, A.J., Pearlstein, R.A.: Molecular mechanics force-field parameterization procedures. J. Comput. Chem. 5, 486–499 (1984)

    Google Scholar 

  67. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Google Scholar 

  68. Danne, R., et al.: doGlycans–tools for preparing carbohydrate structures for atomistic simulations of glycoproteins, glycolipids, and carbohydrate polymers for GROMACS. J. Chem. Inf. Model. 57, 2401–2406 (2017)

    Google Scholar 

  69. Jämbeck, J.P.M., Lyubartsev, A.P.: Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B 116, 3164–3179 (2012)

    Google Scholar 

  70. Jha, P.K., Larson, R.G.: Assessing the efficiency of polymeric excipients by atomistic molecular dynamics simulations. Mol. Pharm. 11, 1676–1686 (2014)

    Article  CAS  Google Scholar 

  71. Vanommeslaeghe, K., MacKerell, A.D.: Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154 (2012)

    Google Scholar 

  72. Malde, A.K., et al.: An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7, 4026–4037 (2011)

    Google Scholar 

  73. Zoete, V., Cuendet, M.A., Grosdidier, A., Michielin, O.: SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32, 2359–2368 (2011)

    Google Scholar 

  74. Huang, W., Dalal, I.S., Larson, R.G.: Analysis of solvation and gelation behavior of methylcellulose using atomistic molecular dynamics simulations. J. Phys. Chem. B 118, 13992–14008 (2014)

    Article  CAS  Google Scholar 

  75. Chen, C., et al.: A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide). J. Chem. Phys. 124, 234901 (2006)

    Article  CAS  Google Scholar 

  76. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Google Scholar 

  77. Andersen, H.C.: Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983)

    Article  CAS  Google Scholar 

  78. Miyamoto, S., Kollman, P.A.: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992)

    Article  CAS  Google Scholar 

  79. Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  CAS  Google Scholar 

  80. Yeh, I.C., Hummer, G.: System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J. Phys. Chem. B 108, 15873–15879 (2004)

    Article  CAS  Google Scholar 

  81. Yi, P., Locker, C.R., Rutledge, G.C.: Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene. Macromolecules 46, 4723–4733 (2013)

    Google Scholar 

  82. Lee, H., Venable, R.M., MacKerell, A.D., Pastor, R.W.: Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 95, 1590–1599 (2008)

    Google Scholar 

  83. Sulatha, M.S., Natarajan, U.: Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. Ind. Eng. Chem. Res. 50, 11785–11796 (2011)

    Google Scholar 

  84. Yao, G., Zhao, J., Ramisetti, S.B., Wen, D.: Atomistic molecular dynamic simulation of dilute poly(acrylic acid) solution: effects of simulation size sensitivity and ionic strength. Ind. Eng. Chem. Res. 57, 17129–17141 (2018)

    Google Scholar 

  85. Park, S., Zhu, X., Yethiraj, A.: Atomistic simulations of dilute polyelectrolyte solutions. J. Phys. Chem. B 116, 4319–4327 (2012)

    Article  CAS  Google Scholar 

  86. Min, S.H., Kwak, S.K., Kim, B.-S.: Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate). Soft Matter 11, 2423–2433 (2015)

    Article  CAS  Google Scholar 

  87. Chiessi, E., Paradossi, G.: Influence of tacticity on hydrophobicity of poly(N-isopropylacrylamide): a single chain molecular dynamics simulation study. J. Phys. Chem. B 120, 3765–3776 (2016)

    Google Scholar 

  88. Rukmani, S.J., Kupgan, G., Anstine, D.M., Colina, C.M.: A molecular dynamics study of water-soluble polymers: analysis of force fields from atomistic simulations. Mol. Simul. 45, 310–321 (2019)

    Google Scholar 

  89. Zhang, Z., et al.: Atomistic structure of bottlebrush polymers: simulations and neutron scattering studies. Macromolecules 47, 5808–5814 (2014)

    Google Scholar 

  90. Katiyar, R.S., Jha, P.K.: Molecular insights into the effects of media-drug and carrier-drug interactions on pH-responsive drug carriers. Mol. Pharm. 15, 2479–2483 (2018)

    Google Scholar 

  91. Jha, P.K., Desai, P.S., Li, J., Larson, R.G.: pH and salt effects on the associative phase separation of oppositely charged polyelectrolytes. Polymers (Basel). 6, 1414–1436 (2014)

    Article  CAS  Google Scholar 

  92. Hoda, N., Larson, R.G.: Explicit- and implicit-solvent molecular dynamics simulations of complex formation between polycations and polyanions. Macromolecules 42, 8851–8863 (2009)

    Article  CAS  Google Scholar 

  93. Sánchez, P.A., Smiatek, J., Qiao, B., Sega, M., Holm, C.: Atomistic simulation of oligoelectrolyte multilayers growth. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (Eds.) High Performance Computing in Science and Engineering, vol. 15, pp. 215–228. Springer International Publishing (2016)

    Google Scholar 

  94. Li, X., et al.: Cross-linked polysaccharide assemblies in marine gels: an atomistic simulation. J. Phys. Chem. Lett. 4, 2637–2642 (2013)

    Google Scholar 

  95. Morrow, B.H., Payne, G.F., Shen, J.: pH-responsive self-assembly of polysaccharide through a rugged energy landscape. J. Am. Chem. Soc. 137, 13024–13030 (2015)

    Google Scholar 

  96. Hamed, E., Ma, D., Keten, S.: Multiple PEG chains attached onto the surface of a helix bundle: conformations and implications. ACS Biomater. Sci. Eng. 1, 79–84 (2015)

    Google Scholar 

  97. Liu, M.S., et al.: Conformational transitions and dynamics of thermal responsive poly(N-isopropylacrylamide) polymers as revealed by molecular simulation. Eur. Polym. J. 55, 153–159 (2014)

    Google Scholar 

  98. Yin, Q., Zhang, L., Jiang, B., Yin, Q., Du, K.: Effect of water in amorphous polyvinyl formal: insights from molecular dynamics simulation. J. Mol. Model. 21, 2 (2015)

    Article  CAS  Google Scholar 

  99. Martinez de Arenaza, I., Meaurio, E., Coto, B., Sarasua, J.-R.: Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends. Polymer (Guildf) 51, 4431–4438 (2010)

    Google Scholar 

  100. Prathab, B., Subramanian, V., Aminabhavi, T.M.: Molecular dynamics simulations to investigate polymer-polymer and polymer-metal oxide interactions. Polymer (Guildf). 48, 409–416 (2007)

    Google Scholar 

  101. Prathab, B., Aminabhavi, T.M., Parthasarathi, R., Manikandan, P., Subramanian, V.: Molecular modeling and atomistic simulation strategies to determine surface properties of perfluorinated homopolymers and their random copolymers. Polymer (Guildf). 47, 6914–6924 (2006)

    Google Scholar 

  102. Natarajan, U., Misra, S., Mattice, W.L.: Atomistic simulation of a polymer-polymer interface: interfacial energy and work of adhesion. Comput. Theor. Polym. Sci. 8, 323–329 (1998)

    Google Scholar 

  103. Luchinsky, D.G., et al.: Welding dynamics in an atomistic model of an amorphous polymer blend with polymer–polymer interface. J. Polym. Sci. 58, 2051–2061 (2020)

    Google Scholar 

  104. Barrat, J.-L., Baschnagel, J., Lyulin, A.: Molecular dynamics simulations of glassy polymers. Soft Matter 6, 3430–3446 (2010)

    Google Scholar 

  105. Mishra, S., Keten, S.: Atomistic simulation based prediction of the solvent effect on the molecular mobility and glass transition of poly (methyl methacrylate). Appl. Phys. Lett. 102, 41903 (2013)

    Google Scholar 

  106. Wang, X., Tang, C., Wang, Q., Li, X., Hao, J.: Selection of optimal polymerization degree and force field in the molecular dynamics simulation of insulating paper cellulose. Energies 10 (2017)

    Google Scholar 

  107. Saha, S., Bhowmick, A.K.: An Insight into molecular structure and properties of flexible amorphous polymers: a molecular dynamics simulation approach. J. Appl. Polym. Sci. 136, 47457 (2019)

    Google Scholar 

  108. Mansfield, K.F., Theodorou, D.N.: Atomistic simulation of a glassy polymer surface. Macromolecules 23, 4430–4445 (1990)

    Google Scholar 

  109. Ewen, J.P., et al. A Comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9, (2016)

    Google Scholar 

  110. Xiang, H., et al.: Study of the mechanical and thermal properties of poly(Lactic Acid) and poly(Ethylene Glycol) block copolymer with molecular dynamics. Int. J. Polym. Anal. Char. 15, 235–244 (2010)

    Google Scholar 

  111. Wu, C., Xu, W.: Atomistic molecular modelling of crosslinked epoxy resin. Polymer (Guildf). 47, 6004–6009 (2006)

    Google Scholar 

  112. Wu, C., Xu, W.: Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer (Guildf). 48, 5802–5812 (2007)

    Google Scholar 

  113. Masoumi, S., Arab, B., Valipour, H.: A study of thermo-mechanical properties of the cross-linked epoxy: an atomistic simulation. Polymer (Guildf) 70, 351–360 (2015)

    Google Scholar 

  114. Shokuhfar, A., Arab, B.: The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J. Mol. Model. 19, 3719–3731 (2013)

    Google Scholar 

  115. Koo, B., Subramanian, N., Chattopadhyay, A.: Molecular dynamics study of brittle fracture in epoxy-based thermoset polymer. Compos. Part B Eng. 95, 433–439 (2016)

    Google Scholar 

  116. Izadi, R., Ghavanloo, E., Nayebi, A.: Elastic properties of polymer composites reinforced with C60 fullerene and carbon onion: molecular dynamics simulation. Phys. B Condens. Matter 574, 311636 (2019)

    Google Scholar 

  117. Sina, A., Nima, R.: Effects of cement-polymer interface properties on mechanical response of fiber-reinforced cement composites. J. Nanomech. Micromech. 7, 4017002 (2017)

    Google Scholar 

  118. Zaminpayma, E.: Molecular dynamics simulation of mechanical properties and interaction energy of polythiophene/polyethylene/poly(p-phenylenevinylene) and CNTs composites. Polym. Compos. 35, 2261–2268 (2014)

    Article  CAS  Google Scholar 

  119. Bohlén, M., Bolton, K.: Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly(vinylidene fluoride). Comput. Mater. Sci. 68, 73–80 (2013)

    Google Scholar 

  120. Verma, A., Parashar, A., Packirisamy, M.: Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. WIREs Comput. Mol. Sci. 8, e1346 (2018)

    Google Scholar 

  121. Sharma, P., Roy, S., Karimi-Varzaneh, H.A.: Validation of force fields of Rubber through glass-transition temperature calculation by microsecond atomic-scale molecular dynamics simulation. J. Phys. Chem. B 120, 1367–1379 (2016)

    Google Scholar 

  122. Masoumi, S., Valipour, H.: Effects of moisture exposure on the crosslinked epoxy system: an atomistic study. Model. Simul. Mater. Sci. Eng. 24, 35011 (2016)

    Google Scholar 

  123. Mo, Z., Zhu, X., Wang, G., Han, W., Guo, R.: Molecular dynamics simulation on the interaction between single-walled carbon nanotubes and binaphthyl core-based chiral phenylene dendrimers. J. Mater. Res. 29, 2156–2161 (2014)

    Google Scholar 

  124. Lempesis, N., in ‘t Veld, P.J., Rutledge, G.C.: Atomistic simulation of a thermoplastic polyurethane and micromechanical modeling. Macromolecules 50, 7399–7409 (2017)

    Google Scholar 

  125. Luo, C.: A challenging topic of computer simulations: polymorphism in polymers. Polym. Cryst. 3, e10109 (2020)

    CAS  Google Scholar 

  126. Rutledge, G.C., Suter, U.W.: Detailed atomistic simulation of oriented pseudocrystalline polymers and application to a stiff-chain aramid. Macromolecules 24, 1921–1933 (1991)

    Article  CAS  Google Scholar 

  127. Zhu, W., Romanski, F.S., Dalvi, S.V, Dave, R.N., Silvina Tomassone, M.: Atomistic simulations of aqueous griseofulvin crystals in the presence of individual and multiple additives. Chem. Eng. Sci. 73, 218–230 (2012)

    Google Scholar 

  128. Zhu, W., Romanski, F.S., Meng, X., Mitra, S., Tomassone, M.S.: Atomistic simulation study of surfactant and polymer interactions on the surface of a fenofibrate crystal. Eur. J. Pharm. Sci. 42, 452–461 (2011)

    Article  CAS  Google Scholar 

  129. Gupta, K.M., Yani, Y., Poornachary, S.K., Chow, P.S.: Atomistic simulation to understand anisotropic growth behavior of Naproxen crystal in the presence of polymeric additives. Cryst. Growth Des. 19, 3768–3776 (2019)

    Google Scholar 

  130. Daoulas, K.C., Harmandaris, V.A., Mavrantzas, V.G.: Detailed atomistic simulation of a polymer melt/solid interface: structure, density, and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38, 5780–5795 (2005)

    Google Scholar 

  131. Zhang, L., Hu, Z., Jiang, J.: Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: a fully atomistic simulation study. J. Phys. Chem. C 116, 19268–19277 (2012)

    Article  CAS  Google Scholar 

  132. Hong, B., Panagiotopoulos, A.Z.: Atomistic simulation of CO2 solubility in poly(ethylene oxide) oligomers. Mol. Phys. 112, 1540–1547 (2014)

    Article  CAS  Google Scholar 

  133. Kim, D.J., Park, C.H., Tocci, E., Nam, S.Y.: Experimental and modeling study of blended membranes for direct methanol fuel cells. J. Memb. Sci. 564, 308–316 (2018)

    Article  CAS  Google Scholar 

  134. Glotzer, S.C., Paul, W.: Molecular and mesoscale simulation methods for polymer materials. Annu. Rev. Mater. Res. 32, 401–436 (2002)

    Article  CAS  Google Scholar 

  135. de Pablo, J.J.: Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu. Rev. Phys. Chem. 62, 555–574 (2011)

    Article  CAS  Google Scholar 

  136. Peter, C., Kremer, K.: Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5, 4357 (2009)

    Article  CAS  Google Scholar 

  137. Mushrif, S.H., Vasudevan, V., Krishnamurthy, C.B., Venkatesh, B.: Multiscale molecular modeling can be an effective tool to aid the development of biomass conversion technology: a perspective. Chem. Eng. Sci. 121, 217–235 (2015)

    Article  CAS  Google Scholar 

  138. Praprotnik, M., Site, L.D., Kremer, K.: Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008)

    Article  CAS  Google Scholar 

  139. Öttinger, H.: Systematic coarse graining: “four lessons and a caveat” from nonequilibrium statistical mechanics. MRS Bull. 32, 936–940 (2007)

    Article  Google Scholar 

  140. Wang, Y., Li, Z., Xu, J., Yang, C., Karniadakis, G.E.: Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces. Soft Matter 15, 1747–1757 (2019)

    Article  CAS  Google Scholar 

  141. Rzepiela, A.J., Louhivuori, M., Peter, C., Marrink, S.J.: Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys. Chem. Chem. Phys. 13, 10437–10448 (2011)

    Article  CAS  Google Scholar 

  142. Gołębiowski, J.R., Kermode, J.R., Haynes, P.D., Mostofi, A.A.: Atomistic QM/MM simulations of the strength of covalent interfaces in carbon nanotube–polymer composites. Phys. Chem. Chem. Phys. 22, 12007–12014 (2020)

    Google Scholar 

  143. Carrillo, J.M.Y., Dobrynin, A.V.: Detailed molecular dynamics simulations of a model NaPPS in water. J. Phys. Chem. B 114, 9391–9399 (2010)

    Google Scholar 

  144. Arnarez, C., et al.: Dry martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J. Chem. Theory Comput. 11, 260–275 (2015)

    Google Scholar 

  145. Pike, D.Q., Detcheverry, F.A., Müller, M., De Pablo, J.J.: Theoretically informed coarse grain simulations of polymeric systems. J. Chem. Phys. 131, 1–10 (2009)

    Article  CAS  Google Scholar 

  146. Jha, P.K., Zwanikken, J.W., Detcheverry, F.A., de Pablo, J.J., Olvera de la Cruz, M.: Study of volume phase transitions in polymeric nanogels by theoretically informed coarse-grained simulations. Soft Matter 7, 5965–5975 (2011)

    Google Scholar 

  147. Ayton, G., Voth, G.A.: Bridging microscopic and mesoscopic simulations of lipid bilayers. Biophys. J. 83, 3357–3370 (2002)

    Article  CAS  Google Scholar 

  148. McCarty, J., Clark, A.J., Copperman, J., Guenza, M.G.: An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale. J. Chem. Phys. 140, 204913 (2014)

    Article  CAS  Google Scholar 

  149. Ayton, G., Smondyrev, A.M., Bardenhagen, S.G., McMurtry, P., Voth, G.A.: Interfacing molecular dynamics and macro-scale simulations for lipid bilayer vesicles. Biophys. J. 83, 1026–1038 (2002)

    Article  CAS  Google Scholar 

  150. Li, X., Kou, D., Rao, S., Liang, H.: Developing a coarse-grained force field for the diblock copolymer poly(styrene-b-butadiene) from atomistic simulation. J. Chem. Phys. 124, 204909 (2006)

    Article  CAS  Google Scholar 

  151. Fukuda, M., Zhang, H., Ishiguro, T., Fukuzawa, K., Itoh, S.: Structure-based coarse-graining for inhomogeneous liquid polymer systems. J. Chem. Phys. 139 (2013)

    Google Scholar 

  152. Fu, Y., et al.: Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends. Mol. Simul. 39, 415–422 (2013)

    Article  CAS  Google Scholar 

  153. Scocchi, G., Posocco, P., Fermeglia, M., Pricl, S.: Polymer−clay nanocomposites: a multiscale molecular modeling approach. J. Phys. Chem. B 111, 2143–2151 (2007)

    Article  CAS  Google Scholar 

  154. Depa, P., Chen, C., Maranas, J.K.: Why are coarse-grained force fields too fast? a look at dynamics of four coarse-grained polymers. J. Chem. Phys. 134, 14903 (2011)

    Article  CAS  Google Scholar 

  155. Katiyar, R.S., Jha, P.K.: Mimicking the dissolution mechanisms of pH-responsive drug release formulations in atomistic MD simulations. Adv. Theory Simul. 2, 1900053 (2019)

    Article  CAS  Google Scholar 

  156. Mackenzie, R., Booth, J., Alexander, C., Garnett, M.C., Laughton, C.A.: Multiscale modeling of drug-polymer nanoparticle assembly identifies parameters influencing drug encapsulation efficiency. J. Chem. Theory Comput. 11, 2705–2713 (2015)

    Article  CAS  Google Scholar 

  157. Glagolev, M.K., Lazutin, A.A., Vasilevskaya, V.V.: Macroscopic properties of hypercrosslinked polystyrene networks: an atomistic and coarse-grained molecular dynamics simulation. Macromol. Symp. 348, 14–24 (2015)

    Article  CAS  Google Scholar 

  158. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., Vries, A.H.D.: Coarse grained model for biomolecular simulations: the MARTINI force field. J. Phys. Chem. B 111, 7812–7824 (2007)

    Google Scholar 

  159. Rossi, G., Monticelli, L., Puisto, S.R., Vattulainen, I., Ala-Nissila, T.: Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter 7, 698–708 (2011)

    Article  CAS  Google Scholar 

  160. Grunewald, F., Rossi, G., de Vries, A.H., Marrink, S.J., Monticelli, L.: Transferable MARTINI model of poly(ethylene Oxide). J. Phys. Chem. B 122, 7436–7449 (2018)

    Article  CAS  Google Scholar 

  161. Panizon, E., Bochicchio, D., Monticelli, L., Rossi, G.: MARTINI coarse-grained models of polyethylene and polypropylene. J. Phys. Chem. B 119, 8209–8216 (2015)

    Google Scholar 

  162. Mannodi-Kanakkithodi, A., Pilania, G., Huan, T.D., Lookman, T., Ramprasad, R.: Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016)

    Article  CAS  Google Scholar 

  163. Wei, Q., Melko, R.G., Chen, J.Z.Y.: Identifying polymer states by machine learning. Phys. Rev. E 95, 32504 (2017)

    Article  Google Scholar 

  164. Kim, C., Batra, R., Chen, L., Tran, H., Ramprasad, R.: Polymer design using genetic algorithm and machine learning. Comput. Mater. Sci. 186, 110067 (2021)

    Article  CAS  Google Scholar 

  165. Sha, W., et al.: Machine learning in polymer informatics. InfoMat 3, 353–361 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek K. Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yellam, K., Katiyar, R.S., Jha, P.K. (2022). Current Perspective on Atomistic Force Fields of Polymers. In: Verma, A., Mavinkere Rangappa, S., Ogata, S., Siengchin, S. (eds) Forcefields for Atomistic-Scale Simulations: Materials and Applications. Lecture Notes in Applied and Computational Mechanics, vol 99. Springer, Singapore. https://doi.org/10.1007/978-981-19-3092-8_3

Download citation

Publish with us

Policies and ethics