Skip to main content

Gut Microbiota in Kawasaki Disease

  • Chapter
  • First Online:
Kawasaki Disease
  • 386 Accesses

Abstract

Although the mechanisms underlining the onset and development of Kawasaki disease (KD) remain to be underdetermined, the disease appears to be a result of multiple interactions between genetic and environmental susceptibility factors with an infectious trigger, followed by abnormal immune responses characterized by increased inflammatory cytokines in acute phase. The gut microbiota, a microbial community includes more than 1000 different interacting bacterial species in major and some other eukaryotic fungi, viruses, and bacteriophages in the gut, and has now associated with certain diseases such as immune-related disorders, metabolic diseases, and disorders of the nervous system. Mounting evidences have demonstrated that the gut microbiota participated in host immune system maturation. Intriguingly, gastrointestinal symptoms and complications are often observed in KD patients, and antibiotic administration has linked to the development of KD by changing the gut microbiota in infants and young children. Therefore, the gut microbiota may also play some roles in KD. In this chapter, we will summarize the involvement of the gut microbiota in childhood immune diseases, cardiovascular disease, and its relationship to KD as well as how gut microbiota and their associated metabolites influence KD onset and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

KD:

Kawasaki diseases

SCFAs:

short chain fatty acids

References

  1. Nakamura Y, Yashiro M, Uehara R, Oki I, Watanabe M, Yanagawa H. Epidemiologic features of Kawasaki disease in Japan: results from the nationwide survey in 2005-2006. J Epidemiol. 2008;18(4):167–72. https://doi.org/10.2188/jea.je2008001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yanagawa H, Nakamura Y, Yashiro M, Ojima T, Tanihara S, Oki I, et al. Results of the nationwide epidemiologic survey of Kawasaki disease in 1995 and 1996 in Japan. Pediatrics. 1998;102(6):E65. https://doi.org/10.1542/peds.102.6.e65.

    Article  CAS  PubMed  Google Scholar 

  3. Yanagawa H, Yashiro M, Nakamura Y, Kawasaki T, Kato H. Epidemiologic pictures of Kawasaki disease in Japan: from the nationwide incidence survey in 1991 and 1992. Pediatrics. 1995;95(4):475–9.

    Article  CAS  Google Scholar 

  4. Makino N, Nakamura Y, Yashiro M, Kosami K, Matsubara Y, Ae R, et al. Nationwide epidemiologic survey of Kawasaki disease in Japan, 2015–2016. Pediatr Int. 2019;61(4):397–403. https://doi.org/10.1111/ped.13809.

    Article  PubMed  Google Scholar 

  5. Uehara R, Belay ED. Epidemiology of Kawasaki disease in Asia, Europe, and the United States. J Epidemiol. 2012;22(2):79–85. https://doi.org/10.2188/jea.je20110131.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lue HC, Philip S, Chen MR, Wang JK, Wu MH. Surveillance of Kawasaki disease in Taiwan and review of the literature. Acta Paediatr Taiwan. 2004;45(1):8–14.

    PubMed  Google Scholar 

  7. Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi. 1967;16(3):178–222.

    CAS  PubMed  Google Scholar 

  8. Burns JC, Glode MP. Kawasaki syndrome. Lancet. 2004;364(9433):533–44. https://doi.org/10.1016/S0140-6736(04)16814-1.

    Article  PubMed  Google Scholar 

  9. Embil JA, McFarlane ES, Murphy DM, Krause VW, Stewart HB. Adenovirus type 2 isolated from a patient with fatal Kawasaki disease. Can Med Assoc J. 1985;132(12):1400.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rowley AH, Shulman ST. The epidemiology and pathogenesis of Kawasaki disease. Front Pediatr. 2018;6:374. https://doi.org/10.3389/fped.2018.00374.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nagata S. Causes of Kawasaki disease-from past to present. Front Pediatr. 2019;7:18. https://doi.org/10.3389/fped.2019.00018.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakamura A, Ikeda K, Hamaoka K. Aetiological significance of infectious stimuli in Kawasaki disease. Front Pediatr. 2019;7:244. https://doi.org/10.3389/fped.2019.00244.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Esposito S, Polinori I, Rigante D. The gut microbiota-host partnership as a potential driver of Kawasaki syndrome. Front Pediatr. 2019;7:124. https://doi.org/10.3389/fped.2019.00124.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rhim JW, Kang HM, Han JW, Lee KY. A presumed etiology of Kawasaki disease based on epidemiological comparison with infectious or immune-mediated diseases. Front Pediatr. 2019;7:202. https://doi.org/10.3389/fped.2019.00202.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Onouchi Y. The genetics of Kawasaki disease. Int J Rheum Dis. 2018;21(1):26–30. https://doi.org/10.1111/1756-185X.13218.

    Article  PubMed  Google Scholar 

  16. Corinaldesi E, Pavan V, Andreozzi L, Fabi M, Selvini A, Frabboni I, et al. Environmental factors and Kawasaki disease onset in Emilia-Romagna, Italy. Int J Environ Res Public Health. 2020;17(5) https://doi.org/10.3390/ijerph17051529.

  17. Manlhiot C, Mueller B, O'Shea S, Majeed H, Bernknopf B, Labelle M, et al. Environmental epidemiology of Kawasaki disease: linking disease etiology, pathogenesis and global distribution. PLoS One. 2018;13(2):e0191087. https://doi.org/10.1371/journal.pone.0191087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukazawa M Jr, Fukazawa M, Nanishi E, Nishio H, Ichihara K, Ohga S. Previous antibiotic use and the development of Kawasaki disease: a matched pair case-control study. Pediatr Int. 2020;62(9):1044–8. https://doi.org/10.1111/ped.14255.

    Article  CAS  PubMed  Google Scholar 

  19. Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65(11):1906–15. https://doi.org/10.1136/gutjnl-2016-312297.

    Article  CAS  PubMed  Google Scholar 

  20. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410. https://doi.org/10.1038/ncomms10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marra F, Marra CA, Richardson K, Lynd LD, Kozyrskyj A, Patrick DM, et al. Antibiotic use in children is associated with increased risk of asthma. Pediatrics. 2009;123(3):1003–10. https://doi.org/10.1542/peds.2008-1146.

    Article  PubMed  Google Scholar 

  22. Hoskin-Parr L, Teyhan A, Blocker A, Henderson AJ. Antibiotic exposure in the first two years of life and development of asthma and other allergic diseases by 7.5 year: a dose-dependent relationship. Pediatr Allergy Immunol. 2013;24(8):762–71. https://doi.org/10.1111/pai.12153.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Noval Rivas M, Wakita D, Franklin MK, Carvalho TT, Abolhesn A, Gomez AC, et al. Intestinal permeability and IgA provoke immune Vasculitis linked to cardiovascular inflammation. Immunity. 2019;51(3):508–21 e6. https://doi.org/10.1016/j.immuni.2019.05.021.

    Article  CAS  PubMed  Google Scholar 

  24. Robinson CM, Pfeiffer JK. Viruses and the microbiota. Annu Rev Virol. 2014;1:55–69. https://doi.org/10.1146/annurev-virology-031413-085550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sudo D, Nakamura Y. Nationwide surveys show that the incidence of recurrent Kawasaki disease in Japan has hardly changed over the last 30 years. Acta Paediatr. 2017;106(5):796–800. https://doi.org/10.1111/apa.13773.

    Article  CAS  PubMed  Google Scholar 

  26. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41. https://doi.org/10.1038/nature11551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arvonen M, Berntson L, Pokka T, Karttunen TJ, Vahasalo P, Stoll ML. Gut microbiota-host interactions and juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2016;14(1):44. https://doi.org/10.1186/s12969-016-0104-6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kinumaki A, Sekizuka T, Hamada H, Kato K, Yamashita A, Kuroda M. Characterization of the gut microbiota of Kawasaki disease patients by metagenomic analysis. Front Microbiol. 2015;6:824. https://doi.org/10.3389/fmicb.2015.00824.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Milshteyn A, Colosimo DA, Brady SF. Accessing bioactive natural products from the human microbiome. Cell Host Microbe. 2018;23(6):725–36. https://doi.org/10.1016/j.chom.2018.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nafady-Hego H, Li Y, Ohe H, Elgendy H, Zhao X, Sakaguchi S, et al. Utility of CD127 combined with FOXP3 for identification of operational tolerance after liver transplantation. Transpl Immunol. 2016;36:1–8. https://doi.org/10.1016/j.trim.2016.04.005.

    Article  CAS  PubMed  Google Scholar 

  31. Ma J, Li Z, Zhang W, Zhang C, Zhang Y, Mei H, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. https://doi.org/10.1038/s41598-020-72635-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buccigrossi V, Nicastro E, Guarino A. Functions of intestinal microflora in children. Curr Opin Gastroenterol. 2013;29(1):31–8. https://doi.org/10.1097/MOG.0b013e32835a3500.

    Article  PubMed  Google Scholar 

  33. Kim G, Bae J, Kim MJ, Kwon H, Park G, Kim SJ, et al. Delayed establishment of gut microbiota in infants delivered by cesarean section. Front Microbiol. 2020;11:2099. https://doi.org/10.3389/fmicb.2020.02099.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin J, Yao Z. Maternal-infant correlation of multidrug-resistant Staphylococcus aureus carriage: a prospective cohort study. Front Pediatr. 2018;6:384. https://doi.org/10.3389/fped.2018.00384.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177. https://doi.org/10.1371/journal.pbio.0050177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Ryu E, Hathcock M, Ballman K, Chia N, Olson JE, et al. Impact of demographics on human gut microbial diversity in a US Midwest population. PeerJ. 2016;4:e1514. https://doi.org/10.7717/peerj.1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. https://doi.org/10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  38. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–22. https://doi.org/10.1038/nm.4142.

    Article  CAS  PubMed  Google Scholar 

  39. Yorifuji T, Tsukahara H, Doi H. Breastfeeding and risk of Kawasaki disease: a Nationwide longitudinal survey in Japan. Pediatrics. 2016;137(6):e20153919. https://doi.org/10.1542/peds.2015-3919.

    Article  PubMed  Google Scholar 

  40. Fujiwara T, Shobugawa Y, Matsumoto K, Kawachi I. Association of early social environment with the onset of pediatric Kawasaki disease. Ann Epidemiol. 2019;29:74–80. https://doi.org/10.1016/j.annepidem.2018.10.010.

    Article  PubMed  Google Scholar 

  41. Selma-Royo M, Tarrazo M, Garcia-Mantrana I, Gomez-Gallego C, Salminen S, Collado MC. Shaping microbiota during the first 1000 days of life. Adv Exp Med Biol. 2019;1125:3–24. https://doi.org/10.1007/5584_2018_312.

    Article  PubMed  Google Scholar 

  42. Lee KY, Hamada H, Arvonen M. Editorial: infection-related immune-mediated diseases and microbiota. Front Pediatr. 2020;8:108. https://doi.org/10.3389/fped.2020.00108.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thierry S, Fautrel B, Lemelle I, Guillemin F. Prevalence and incidence of juvenile idiopathic arthritis: a systematic review. Joint Bone Spine. 2014;81(2):112–7. https://doi.org/10.1016/j.jbspin.2013.09.003.

    Article  PubMed  Google Scholar 

  44. Tuomilehto J. The emerging global epidemic of type 1 diabetes. Curr Diab Rep. 2013;13(6):795–804. https://doi.org/10.1007/s11892-013-0433-5.

    Article  CAS  PubMed  Google Scholar 

  45. Ahn HJ, Kim YJ, Lee HS, Park JH, Hwang SW, Yang DH, et al. High risk of fractures within 7 years of diagnosis in Asian patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2021;20(5):e1022–39. https://doi.org/10.1016/j.cgh.2021.06.026.

    Article  CAS  PubMed  Google Scholar 

  46. Yildiz M, Haslak F, Adrovic A, Sahin S, Koker O, Barut K, et al. Pediatric Behcet’s disease. Front Med (Lausanne). 2021;8:627192. https://doi.org/10.3389/fmed.2021.627192.

    Article  Google Scholar 

  47. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. https://doi.org/10.1186/s40168-016-0222-x.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6(1):66. https://doi.org/10.1186/s40168-018-0441-4.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3):e0174099. https://doi.org/10.1371/journal.pone.0174099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rowley AH, Eckerley CA, Jack HM, Shulman ST, Baker SC. IgA plasma cells in vascular tissue of patients with Kawasaki syndrome. J Immunol. 1997;159(12):5946–55.

    CAS  PubMed  Google Scholar 

  51. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016;22(5):516–23. https://doi.org/10.1038/nm.4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20. https://doi.org/10.1126/science.1104816.

    Article  CAS  PubMed  Google Scholar 

  53. LeBlanc JG, Chain F, Martin R, Bermudez-Humaran LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories. 2017;16(1):79. https://doi.org/10.1186/s12934-017-0691-z.

    Article  CAS  Google Scholar 

  54. Guo MM, Tseng WN, Ko CH, Pan HM, Hsieh KS, Kuo HC. Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy. 2015;70(3):310–8. https://doi.org/10.1111/all.12558.

    Article  CAS  PubMed  Google Scholar 

  55. Jia S, Li C, Wang G, Yang J, Zu Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin Exp Immunol. 2010;162(1):131–7. https://doi.org/10.1111/j.1365-2249.2010.04236.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Furuno K, Yuge T, Kusuhara K, Takada H, Nishio H, Khajoee V, et al. CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J Pediatr. 2004;145(3):385–90. https://doi.org/10.1016/j.jpeds.2004.05.048.

    Article  CAS  PubMed  Google Scholar 

  57. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-Chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol Investig. 2016;45(3):205–22. https://doi.org/10.3109/08820139.2015.1122613.

    Article  CAS  Google Scholar 

  59. Lee JR, Huang J, Magruder M, Zhang LT, Gong C, Sholi AN, et al. Butyrate-producing gut bacteria and viral infections in kidney transplant recipients: a pilot study. Transpl Infect Dis. 2019;21(6):e13180. https://doi.org/10.1111/tid.13180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haak BW, Littmann ER, Chaubard JL, Pickard AJ, Fontana E, Adhi F, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following Allo-HCT. Blood. 2018;131(26):2978–86. https://doi.org/10.1182/blood-2018-01-828996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x.

    Article  CAS  PubMed  Google Scholar 

  62. Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation. 2019;139(5):647–59. https://doi.org/10.1161/CIRCULATIONAHA.118.035235.

    Article  CAS  PubMed  Google Scholar 

  63. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002314.

    Article  CAS  PubMed  Google Scholar 

  64. Chen R, Xu Y, Wu P, Zhou H, Lasanajak Y, Fang Y, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res. 2019;148:104403. https://doi.org/10.1016/j.phrs.2019.104403.

    Article  CAS  PubMed  Google Scholar 

  65. Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C, Taher J, et al. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol. 2020;318(4):G682–G93. https://doi.org/10.1152/ajpgi.00386.2018.

    Article  CAS  PubMed  Google Scholar 

  66. Zhai X, Lin D, Zhao Y, Li W, Yang X. Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet. J Agric Food Chem. 2018;66(48):12706–18. https://doi.org/10.1021/acs.jafc.8b05036.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6. https://doi.org/10.1126/science.aao5774.

    Article  CAS  PubMed  Google Scholar 

  68. Greco A, De Virgilio A, Rizzo MI, Tombolini M, Gallo A, Fusconi M, et al. Kawasaki disease: an evolving paradigm. Autoimmun Rev. 2015;14(8):703–9. https://doi.org/10.1016/j.autrev.2015.04.002.

    Article  PubMed  Google Scholar 

  69. Jaggi P, Kajon AE, Mejias A, Ramilo O, Leber A. Human adenovirus infection in Kawasaki disease: a confounding bystander? Clin Infect Dis. 2013;56(1):58–64. https://doi.org/10.1093/cid/cis807.

    Article  PubMed  Google Scholar 

  70. Holm JM, Hansen LK, Oxhoj H. Kawasaki disease associated with parvovirus B19 infection. Eur J Pediatr. 1995;154(8):633–4. https://doi.org/10.1007/BF02079066.

    Article  CAS  PubMed  Google Scholar 

  71. Barton M, Melbourne R, Morais P, Christie C. Kawasaki syndrome associated with group a streptococcal and Epstein-Barr virus co-infections. Ann Trop Paediatr. 2002;22(3):257–60. https://doi.org/10.1179/027249302125001543.

    Article  PubMed  Google Scholar 

  72. Kanegane H, Tsuji T, Seki H, Yachie A, Yokoi T, Miyawaki T, et al. Kawasaki disease with a concomitant primary Epstein-Barr virus infection. Acta Paediatr Jpn. 1994;36(6):713–6. https://doi.org/10.1111/j.1442-200x.1994.tb03277.x.

    Article  CAS  PubMed  Google Scholar 

  73. Matsubara K, Fukaya T, Miwa K, Shibayama N, Nigami H, Harigaya H, et al. Development of serum IgM antibodies against superantigens of Staphylococcus aureus and streptococcus pyogenes in Kawasaki disease. Clin Exp Immunol. 2006;143(3):427–34. https://doi.org/10.1111/j.1365-2249.2006.03015.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anderson DG, Warner G, Barlow E. Kawasaki disease associated with streptococcal infection within a family. J Paediatr Child Health. 1995;31(4):355–7. https://doi.org/10.1111/j.1440-1754.1995.tb00827.x.

    Article  CAS  PubMed  Google Scholar 

  75. Wang JN, Wang SM, Liu CC, Wu JM. Mycoplasma pneumoniae infection associated with Kawasaki disease. Acta Paediatr. 2001;90(5):594–5. https://doi.org/10.1111/j.1651-2227.2001.tb00810.x.

    Article  CAS  PubMed  Google Scholar 

  76. Normann E, Naas J, Gnarpe J, Backman H, Gnarpe H. Demonstration of chlamydia pneumoniae in cardiovascular tissues from children with Kawasaki disease. Pediatr Infect Dis J. 1999;18(1):72–3. https://doi.org/10.1097/00006454-199901000-00020.

    Article  CAS  PubMed  Google Scholar 

  77. Burns JC, Herzog L, Fabri O, Tremoulet AH, Rodo X, Uehara R, et al. Seasonality of Kawasaki disease: a global perspective. PLoS One. 2013;8(9):e74529. https://doi.org/10.1371/journal.pone.0074529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yanagawa H, Nakamura Y, Kawasaki T, Shigematsu I. Nationwide epidemic of Kawasaki disease in Japan during winter of 1985-86. Lancet. 1986;2(8516):1138–9. https://doi.org/10.1016/s0140-6736(86)90541-6.

    Article  CAS  PubMed  Google Scholar 

  79. Burgner D, Harnden A. Kawasaki disease: what is the epidemiology telling us about the etiology? Int J Infect Dis. 2005;9(4):185–94. https://doi.org/10.1016/j.ijid.2005.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nomura Y, Yoshinaga M, Masuda K, Takei S, Miyata K. Maternal antibody against toxic shock syndrome toxin-1 may protect infants younger than 6 months of age from developing Kawasaki syndrome. J Infect Dis. 2002;185(11):1677–80. https://doi.org/10.1086/340513.

    Article  CAS  PubMed  Google Scholar 

  81. Muso E, Fujiwara H, Yoshida H, Hosokawa R, Yashiro M, Hongo Y, et al. Epstein-Barr virus genome-positive tubulointerstitial nephritis associated with Kawasaki disease-like coronary aneurysms. Clin Nephrol. 1993;40(1):7–15.

    CAS  PubMed  Google Scholar 

  82. Kikuta H, Matsumoto S, Osato T. Kawasaki disease and Epstein-Barr virus. Acta Paediatr Jpn. 1991;33(6):765–70. https://doi.org/10.1111/j.1442-200x.1991.tb02606.x.

    Article  CAS  PubMed  Google Scholar 

  83. Shingadia D, Bose A, Booy R. Could a herpesvirus be the cause of Kawasaki disease? Lancet Infect Dis. 2002;2(5):310–3. https://doi.org/10.1016/s1473-3099(02)00265-7.

    Article  CAS  PubMed  Google Scholar 

  84. Johnson RM, Bergmann KR, Manaloor JJ, Yu X, Slaven JE, Kharbanda AB. Pediatric Kawasaki disease and adult human immunodeficiency virus Kawasaki-like syndrome are likely the same malady. Open forum. Infect Dis. 2016;3(3):ofw160. https://doi.org/10.1093/ofid/ofw160.

    Article  Google Scholar 

  85. Okano M, Thiele GM, Sakiyama Y, Matsumoto S, Purtilo DT. Adenovirus infection in patients with Kawasaki disease. J Med Virol. 1990;32(1):53–7. https://doi.org/10.1002/jmv.1890320109.

    Article  CAS  PubMed  Google Scholar 

  86. Esper F, Shapiro ED, Weibel C, Ferguson D, Landry ML, Kahn JS. Association between a novel human coronavirus and Kawasaki disease. J Infect Dis. 2005;191(4):499–502. https://doi.org/10.1086/428291.

    Article  CAS  PubMed  Google Scholar 

  87. Shulman ST, Rowley AH, Fresco R, Morrison DC. The etiology of Kawasaki disease: retrovirus? Prog Clin Biol Res. 1987;250:117–24.

    CAS  PubMed  Google Scholar 

  88. Nigro G, Zerbini M, Krzysztofiak A, Gentilomi G, Porcaro MA, Mango T, et al. Active or recent parvovirus B19 infection in children with Kawasaki disease. Lancet. 1994;343(8908):1260–1. https://doi.org/10.1016/s0140-6736(94)92154-7.

    Article  CAS  PubMed  Google Scholar 

  89. Santos RA, Nogueira CS, Granja S, Baptista JB, Ribeiro ML, Rocha MG. Kawasaki disease and human bocavirus--potential association? J Microbiol Immunol Infect. 2011;44(3):235–7. https://doi.org/10.1016/j.jmii.2011.01.016.

    Article  CAS  PubMed  Google Scholar 

  90. Magboul S, Khalil A, Hassan M, Habra B, Alshami A, Khan S, et al. Multisystem inflammatory syndrome in children (MIS-C) related to COVID-19 infection in the state of Qatar: association with Kawasaki-like illness. Acta Biomed. 2022;92(6):e2021543. https://doi.org/10.23750/abm.v92i6.11991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leung DY, Meissner HC, Fulton DR, Murray DL, Kotzin BL, Schlievert PM. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet. 1993;342(8884):1385–8. https://doi.org/10.1016/0140-6736(93)92752-f.

    Article  CAS  PubMed  Google Scholar 

  92. Yoshioka T, Matsutani T, Iwagami S, Toyosaki-Maeda T, Yutsudo T, Tsuruta Y, et al. Polyclonal expansion of TCRBV2- and TCRBV6-bearing T cells in patients with Kawasaki disease. Immunology. 1999;96(3):465–72. https://doi.org/10.1046/j.1365-2567.1999.00695.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vollmer-Conna U, Piraino BF, Cameron B, Davenport T, Hickie I, Wakefield D, et al. Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection. Clin Infect Dis. 2008;47(11):1418–25. https://doi.org/10.1086/592967.

    Article  CAS  PubMed  Google Scholar 

  94. Horinouchi T, Nozu K, Hamahira K, Inaguma Y, Abe J, Nakajima H, et al. Yersinia pseudotuberculosis infection in Kawasaki disease and its clinical characteristics. BMC Pediatr. 2015;15:177. https://doi.org/10.1186/s12887-015-0497-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kusuda T, Nakashima Y, Murata K, Kanno S, Nishio H, Saito M, et al. Kawasaki disease-specific molecules in the sera are linked to microbe-associated molecular patterns in the biofilms. PLoS One. 2014;9(11):e113054. https://doi.org/10.1371/journal.pone.0113054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vitale EA, La Torre F, Calcagno G, Infricciori G, Fede C, Conti G, et al. Mycoplasma pneumoniae: a possible trigger of Kawasaki disease or a mere coincidental association? Report of the first four Italian cases. Minerva Pediatr. 2010;62(6):605–7.

    CAS  PubMed  Google Scholar 

  97. Yokota S, Tsubaki K, Kuriyama T, Shimizu H, Ibe M, Mitsuda T, et al. Presence in Kawasaki disease of antibodies to mycobacterial heat-shock protein HSP65 and autoantibodies to epitopes of human HSP65 cognate antigen. Clin Immunol Immunopathol. 1993;67(2):163–70. https://doi.org/10.1006/clin.1993.1060.

    Article  CAS  PubMed  Google Scholar 

  98. Rathore MH, Barton LL, Dawson JE, Regnery RL, Ayoub EM. Ehrlichia chaffeensis and Rochalimaea antibodies in Kawasaki disease. J Clin Microbiol. 1993;31(11):3058–9. https://doi.org/10.1128/jcm.31.11.3058-3059.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weir WR, Bouchet VA, Mitford E, Taylor RF, Smith H. Kawasaki disease in European adult associated with serological response to Coxiella burneti. Lancet. 1985;2(8453):504. https://doi.org/10.1016/s0140-6736(85)90440-4.

    Article  CAS  PubMed  Google Scholar 

  100. Rodo X, Curcoll R, Robinson M, Ballester J, Burns JC, Cayan DR, et al. Tropospheric winds from northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. Proc Natl Acad Sci U S A. 2014;111(22):7952–7. https://doi.org/10.1073/pnas.1400380111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rowley AH, Baker SC, Shulman ST, Rand KH, Tretiakova MS, Perlman EJ, et al. Ultrastructural, immunofluorescence, and RNA evidence support the hypothesis of a "new" virus associated with Kawasaki disease. J Infect Dis. 2011;203(7):1021–30. https://doi.org/10.1093/infdis/jiq136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rowley AH, Baker SC, Shulman ST, Garcia FL, Fox LM, Kos IM, et al. RNA-containing cytoplasmic inclusion bodies in ciliated bronchial epithelium months to years after acute Kawasaki disease. PLoS One. 2008;3(2):e1582. https://doi.org/10.1371/journal.pone.0001582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rowley AH, Baker SC, Shulman ST, Fox LM, Takahashi K, Garcia FL, et al. Cytoplasmic inclusion bodies are detected by synthetic antibody in ciliated bronchial epithelium during acute Kawasaki disease. J Infect Dis. 2005;192(10):1757–66. https://doi.org/10.1086/497171.

    Article  PubMed  Google Scholar 

  104. Song E, Kajon AE, Wang H, Salamon D, Texter K, Ramilo O, et al. Clinical and virologic characteristics may aid distinction of acute adenovirus disease from Kawasaki disease with incidental adenovirus detection. J Pediatr. 2016;170:325–30. https://doi.org/10.1016/j.jpeds.2015.11.021.

    Article  PubMed  Google Scholar 

  105. Turnier JL, Anderson MS, Heizer HR, Jone PN, Glode MP, Dominguez SR. Concurrent respiratory viruses and Kawasaki disease. Pediatrics. 2015;136(3):e609–14. https://doi.org/10.1542/peds.2015-0950.

    Article  PubMed  Google Scholar 

  106. Shimizu C, Shike H, Baker SC, Garcia F, van der Hoek L, Kuijpers TW, et al. Human coronavirus NL63 is not detected in the respiratory tracts of children with acute Kawasaki disease. J Infect Dis. 2005;192(10):1767–71. https://doi.org/10.1086/497170.

    Article  PubMed  Google Scholar 

  107. Xu S, Chen M, Weng J. COVID-19 and Kawasaki disease in children. Pharmacol Res. 2020;159:104951. https://doi.org/10.1016/j.phrs.2020.104951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Viner RM, Whittaker E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet. 2020;395(10239):1741–3. https://doi.org/10.1016/S0140-6736(20)31129-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771–8. https://doi.org/10.1016/S0140-6736(20)31103-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Moreira A. Kawasaki disease linked to COVID-19 in children. Nat Rev Immunol. 2020;20(7):407. https://doi.org/10.1038/s41577-020-0350-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol. 2003;133(3):299–306. https://doi.org/10.1046/j.1365-2249.2003.02203.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoshioka T, Matsutani T, Toyosaki-Maeda T, Suzuki H, Uemura S, Suzuki R, et al. Relation of streptococcal pyrogenic exotoxin C as a causative superantigen for Kawasaki disease. Pediatr Res. 2003;53(3):403–10. https://doi.org/10.1203/01.PDR.0000049668.54870.50.

    Article  CAS  PubMed  Google Scholar 

  113. Ohno N. Murine model of Kawasaki disease induced by mannoprotein-beta-glucan complex, CAWS, obtained from Candida albicans. Jpn J Infect Dis. 2004;57(5):S9–10.

    PubMed  Google Scholar 

  114. Ishida-Okawara A, Nagi-Miura N, Oharaseki T, Takahashi K, Okumura A, Tachikawa H, et al. Neutrophil activation and arteritis induced by C. albicans water-soluble mannoprotein-beta-glucan complex (CAWS). Exp Mol Pathol. 2007;82(2):220–6. https://doi.org/10.1016/j.yexmp.2006.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nagi-Miura N, Okuzaki D, Torigata K, Sakurai MA, Ito A, Ohno N, et al. CAWS administration increases the expression of interferon gamma and complement factors that lead to severe vasculitis in DBA/2 mice. BMC Immunol. 2013;14:44. https://doi.org/10.1186/1471-2172-14-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Takahashi K, Oharaseki T, Wakayama M, Yokouchi Y, Naoe S, Murata H. Histopathological features of murine systemic vasculitis caused by Candida albicans extract--an animal model of Kawasaki disease. Inflamm Res. 2004;53(2):72–7. https://doi.org/10.1007/s00011-003-1225-1.

    Article  CAS  PubMed  Google Scholar 

  117. Miura NN, Komai M, Adachi Y, Osada N, Kameoka Y, Suzuki K, et al. IL-10 is a negative regulatory factor of CAWS-vasculitis in CBA/J mice as assessed by comparison with Bruton's tyrosine kinase-deficient CBA/N mice. J Immunol. 2009;183(5):3417–24. https://doi.org/10.4049/jimmunol.0802484.

    Article  CAS  PubMed  Google Scholar 

  118. Guan Z, Jia J, Zhang C, Sun T, Zhang W, Yuan W, et al. Gut microbiome dysbiosis alleviates the progression of osteoarthritis in mice. Clin Sci (Lond). 2020;134(23):3159–74. https://doi.org/10.1042/CS20201224.

    Article  Google Scholar 

  119. Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51. https://doi.org/10.1080/15548627.2019.1635384.

    Article  CAS  PubMed  Google Scholar 

  120. Amoroso C, Perillo F, Strati F, Fantini MC, Caprioli F, Facciotti F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cell. 2020;9(5):1234. https://doi.org/10.3390/cells9051234.

    Article  CAS  Google Scholar 

  121. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41. https://doi.org/10.1016/j.cell.2014.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Eladawy M, Dominguez SR, Anderson MS, Glode MP. Kawasaki disease and the pediatric gastroenterologist: a diagnostic challenge. J Pediatr Gastroenterol Nutr. 2013;56(3):297–9. https://doi.org/10.1097/MPG.0b013e3182794432.

    Article  PubMed  Google Scholar 

  123. Takeshita S, Nakatani K, Kawase H, Seki S, Yamamoto M, Sekine I, et al. The role of bacterial lipopolysaccharide-bound neutrophils in the pathogenesis of Kawasaki disease. J Infect Dis. 1999;179(2):508–12. https://doi.org/10.1086/314600.

    Article  CAS  PubMed  Google Scholar 

  124. Takeshita S, Tsujimoto H, Kawase H, Kawamura Y, Sekine I. Increased levels of lipopolysaccharide binding protein in plasma in children with Kawasaki disease. Clin Diagn Lab Immunol. 2002;9(1):205–6. https://doi.org/10.1128/cdli.9.1.205-206.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Akiyama T, Yashiro K. Probable role of streptococcus pyogenes in Kawasaki disease. Eur J Pediatr. 1993;152(2):82–92. https://doi.org/10.1007/BF02072479.

    Article  CAS  PubMed  Google Scholar 

  126. Hall M, Hoyt L, Ferrieri P, Schlievert PM, Jenson HB. Kawasaki syndrome-like illness associated with infection caused by enterotoxin B-secreting Staphylococcus aureus. Clin Infect Dis. 1999;29(3):586–9. https://doi.org/10.1086/598638.

    Article  CAS  PubMed  Google Scholar 

  127. Ferwerda A, Moll HA, de Groot R. Respiratory tract infections by mycoplasma pneumoniae in children: a review of diagnostic and therapeutic measures. Eur J Pediatr. 2001;160(8):483–91. https://doi.org/10.1007/s004310100775.

    Article  CAS  PubMed  Google Scholar 

  128. Principi N, Rigante D, Esposito S. The role of infection in Kawasaki syndrome. J Infect. 2013;67(1):1–10. https://doi.org/10.1016/j.jinf.2013.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yamashiro Y, Nagata S, Ohtsuka Y, Oguchi S, Shimizu T. Microbiologic studies on the small intestine in Kawasaki disease. Pediatr Res. 1996;39(4 Pt 1):622–4. https://doi.org/10.1203/00006450-199604000-00010.

    Article  CAS  PubMed  Google Scholar 

  130. Blaabjerg S, Artzi DM, Aabenhus R. Probiotics for the prevention of antibiotic-associated diarrhea in outpatients-a systematic review and meta-analysis. Antibiotics (Basel). 2017;6(4):21. https://doi.org/10.3390/antibiotics6040021.

    Article  CAS  Google Scholar 

  131. Vanderhoof JA, Whitney DB, Antonson DL, Hanner TL, Lupo JV, Young RJ. Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J Pediatr. 1999;135(5):564–8. https://doi.org/10.1016/s0022-3476(99)70053-3.

    Article  CAS  PubMed  Google Scholar 

  132. Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol. 2019;13(1):3–15. https://doi.org/10.1080/17474124.2019.1543023.

    Article  CAS  PubMed  Google Scholar 

  133. Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017;60(6):943–51. https://doi.org/10.1007/s00125-017-4278-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fedorak RN, Feagan BG, Hotte N, Leddin D, Dieleman LA, Petrunia DM, et al. The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn's disease. Clin Gastroenterol Hepatol. 2015;13(5):928–35 e2. https://doi.org/10.1016/j.cgh.2014.10.031.

    Article  CAS  PubMed  Google Scholar 

  135. Liong MT. Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. Int J Mol Sci. 2008;9(5):854–63. https://doi.org/10.3390/ijms9050854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://doi.org/10.1038/nm.3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell. 2020;180(5):862–77 e22. https://doi.org/10.1016/j.cell.2020.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Takeshita S, Kobayashi I, Kawamura Y, Tokutomi T, Sekine I. Characteristic profile of intestinal microflora in Kawasaki disease. Acta Paediatr. 2002;91(7):783–8. https://doi.org/10.1080/08035250213221.

    Article  CAS  PubMed  Google Scholar 

  140. Nagata S, Yamashiro Y, Ohtsuka Y, Shimizu T, Sakurai Y, Misawa S, et al. Heat shock proteins and superantigenic properties of bacteria from the gastrointestinal tract of patients with Kawasaki disease. Immunology. 2009;128(4):511–20. https://doi.org/10.1111/j.1365-2567.2009.03135.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hassidim A, Merdler I, Chorin O, Merdler-Rabinowicz R, Dallal I, Perlman M, et al. Atopic predilection among Kawasaki disease patients: a cross-sectional study of 1,187,757 teenagers. Int Arch Allergy Immunol. 2016;170(2):92–6. https://doi.org/10.1159/000447639.

    Article  CAS  PubMed  Google Scholar 

  142. Woon PY, Chang WC, Liang CC, Hsu CH, Klahan S, Huang YH, et al. Increased risk of atopic dermatitis in preschool children with Kawasaki disease: a population-based study in Taiwan. Evid Based Complement Alternat Med. 2013;2013:605123. https://doi.org/10.1155/2013/605123.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hwang CY, Hwang YY, Chen YJ, Chen CC, Lin MW, Chen TJ, et al. Atopic diathesis in patients with Kawasaki disease. J Pediatr. 2013;163(3):811–5. https://doi.org/10.1016/j.jpeds.2013.03.068.

    Article  PubMed  Google Scholar 

  144. Salameh M, Burney Z, Mhaimeed N, Laswi I, Yousri NA, Bendriss G, et al. The role of gut microbiota in atopic asthma and allergy, implications in the understanding of disease pathogenesis. Scand J Immunol. 2020;91(3):e12855. https://doi.org/10.1111/sji.12855.

    Article  PubMed  Google Scholar 

  145. Singh S, Jindal AK, Pilania RK. Diagnosis of Kawasaki disease. Int J Rheum Dis. 2018;21(1):36–44. https://doi.org/10.1111/1756-185X.13224.

    Article  PubMed  Google Scholar 

  146. Han SB, Lee SY. Antibiotic use in children with Kawasaki disease. World J Pediatr. 2018;14(6):621–2. https://doi.org/10.1007/s12519-018-0157-3.

    Article  PubMed  Google Scholar 

  147. Panda S, El Khader I, Casellas F, Lopez Vivancos J, Garcia Cors M, Santiago A, et al. Short-term effect of antibiotics on human gut microbiota. PLoS One. 2014;9(4):e95476. https://doi.org/10.1371/journal.pone.0095476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nagata S, Yamashiro Y, Maeda M, Ohtsuka Y, Yabuta K. Immunohistochemical studies on small intestinal mucosa in Kawasaki disease. Pediatr Res. 1993;33(6):557–63. https://doi.org/10.1203/00006450-199306000-00004.

    Article  CAS  PubMed  Google Scholar 

  149. Horita N, Yokota S, Fuse S, Takamuro M, Tomita H, Sato K, et al. The throat flora and its mitogenic activity in patients with Kawasaki disease. Microbiol Immunol. 2004;48(11):899–903. https://doi.org/10.1111/j.1348-0421.2004.tb03609.x.

    Article  CAS  PubMed  Google Scholar 

  150. de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S, et al. Altered mucosal microbiome diversity and disease severity in Sjogren syndrome. Sci Rep. 2016;6:23561. https://doi.org/10.1038/srep23561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64. https://doi.org/10.1038/nature13568.

    Article  CAS  PubMed  Google Scholar 

  152. Khan I, Li XA, Law B, KI U, Pan BQ, Lei C, et al. Correlation of gut microbial compositions to the development of Kawasaki disease vasculitis in children. Future Microbiol. 2020;15:591–600. https://doi.org/10.2217/fmb-2019-0301.

    Article  CAS  PubMed  Google Scholar 

  153. Shen J, Ding Y, Yang Z, Zhang X, Zhao M. Effects of changes on gut microbiota in children with acute Kawasaki disease. PeerJ. 2020;8:e9698. https://doi.org/10.7717/peerj.9698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen J, Yue Y, Wang L, Deng Z, Yuan Y, Zhao M, et al. Altered gut microbiota correlated with systemic inflammation in children with Kawasaki disease. Sci Rep. 2020;10(1):14525. https://doi.org/10.1038/s41598-020-71371-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kaneko K, Akagawa S, Akagawa Y, Kimata T, Tsuji S. Our evolving understanding of Kawasaki disease pathogenesis: role of the gut microbiota. Front Immunol. 2020;11:1616. https://doi.org/10.3389/fimmu.2020.01616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, CH., Yeh, YT. (2022). Gut Microbiota in Kawasaki Disease. In: Kuo, HC. (eds) Kawasaki Disease. Springer, Singapore. https://doi.org/10.1007/978-981-19-2944-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2944-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2943-4

  • Online ISBN: 978-981-19-2944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics