Skip to main content

Anemia in Kawasaki Disease

  • Chapter
  • First Online:
Kawasaki Disease
  • 318 Accesses

Abstract

Kawasaki disease (KD) is the most common acute coronary vasculitis syndrome that mainly affects genetically susceptible kids under 5 years of age. Aside from the standard diagnostic five criteria, patients with KD may also experience a variety of nonspecific clinical symptoms and signs. Anemia is the most common clinical feature in KD patients. In 2001, the scientists have the discovery of a liver-derived peptide hormone named as hepcidin began revolutionizing the understanding of anemia’s relation to a number of inflammatory diseases, including KD. This chapter focuses on hepcidin-induced iron deficiency’s relation to transient hyposideremia, anemia, and disease outcomes in KD patients, and goes on to suggest possible routes of KD study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang CL, Wu YT, Liu CA, Kuo HC, Yang KD. Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J. 2005;24:998–1004.

    Article  PubMed  Google Scholar 

  2. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics. 1974;54:271–6.

    Article  CAS  PubMed  Google Scholar 

  3. Newburger JW, Takahashi M, Burns JC, et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med. 1986;315:341–7.

    Article  CAS  PubMed  Google Scholar 

  4. Newburger JW, Takahashi M, Beiser AS, et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med. 1991;324:1633–9.

    Article  CAS  PubMed  Google Scholar 

  5. Huang YH, Lin KM, Ho SC, Yan JH, Lo MH, Kuo HC. Increased incidence of Kawasaki disease in Taiwan in recent years: a 15 years nationwide population-based cohort study. Front Pediatr. 2019;7:121.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hao S, Jin B, Tan Z, et al. A classification tool for differentiation of Kawasaki disease from other febrile illnesses. J Pediatr. 2016;176:114–20. e8

    Article  PubMed  PubMed Central  Google Scholar 

  7. McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135:e927–99.

    Article  PubMed  Google Scholar 

  8. Liu YC, Lin MT, Wang JK, Wu MH. State-of-the-art acute phase management of Kawasaki disease after 2017 scientific statement from the American Heart Association. Pediatr Neonatol. 2018;59:543–52.

    Article  PubMed  Google Scholar 

  9. Newburger JW, Takahashi M, Gerber MA, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American Heart Association. Circulation. 2004;110:2747–71.

    Article  PubMed  Google Scholar 

  10. Tseng HC, Ho JC, Guo MM, et al. Bull’s eye dermatoscopy pattern at bacillus Calmette-Guerin inoculation site correlates with systemic involvements in patients with Kawasaki disease. J Dermatol. 2016;43:1044–50.

    Article  CAS  PubMed  Google Scholar 

  11. Huang YH, Kuo HC, Huang FC, et al. Hepcidin-induced iron deficiency is related to transient anemia and hypoferremia in Kawasaki disease patients. Int J Mol Sci. 2016;17:715.

    Article  PubMed Central  CAS  Google Scholar 

  12. Kuo HC, Hsu YW, Wu MS, Chien SC, Liu SF, Chang WC. Intravenous immunoglobulin, pharmacogenomics, and Kawasaki disease. J Microbiol Immunol Infect. 2016;49:1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Alves NR, Magalhaes CM, Almeida Rde F, Santos RC, Gandolfi L, Pratesi R. Prospective study of Kawasaki disease complications: review of 115 cases. Rev Assoc Med Bras. 2011;57:295–300.

    Article  PubMed  Google Scholar 

  14. Fukushige J, Takahashi N, Ueda Y, Ueda K. Incidence and clinical features of incomplete Kawasaki disease. Acta Paediatr. 1994;83:1057–60.

    Article  CAS  PubMed  Google Scholar 

  15. Kuo HC, Wang CL, Liang CD, et al. Persistent monocytosis after intravenous immunoglobulin therapy correlated with the development of coronary artery lesions in patients with Kawasaki disease. J Microbiol Immunol Infect. 2007;40:395–400.

    PubMed  Google Scholar 

  16. Kuo HC, Yang KD, Liang CD, et al. The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol. 2007;18:354–9.

    Article  PubMed  Google Scholar 

  17. Ling XB, Lau K, Kanegaye JT, et al. A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses. BMC Med. 2011;9:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin YJ, Cheng MC, Lo MH, Chien SJ. Early differentiation of Kawasaki disease shock syndrome and toxic shock syndrome in a pediatric intensive care unit. Pediatr Infect Dis J. 2015;34:1163–7.

    Article  PubMed  Google Scholar 

  19. Nakagawa M, Watanabe N, Okuno M, Kondo M, Okagawa H, Taga T. Severe hemolytic anemia following high-dose intravenous immunoglobulin administration in a patient with Kawasaki disease. Am J Hematol. 2000;63:160–1.

    Article  CAS  PubMed  Google Scholar 

  20. Thorpe SJ. Specifications for anti-a and anti-B in intravenous immunoglobulin: history and rationale. Transfusion. 2015;55(Suppl 2):S80–5.

    Article  CAS  PubMed  Google Scholar 

  21. Nemeth E, Ganz T. Anemia of inflammation. Hematol Oncol Clin North Am. 2014;28:671–81. vi

    Article  PubMed  PubMed Central  Google Scholar 

  22. Keel SB, Abkowitz JL. The microcytic red cell and the anemia of inflammation. N Engl J Med. 2009;361:1904–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.

    Article  CAS  PubMed  Google Scholar 

  24. Hohaus S, Massini G, Giachelia M, et al. Anemia in Hodgkin's lymphoma: the role of interleukin-6 and hepcidin. J Clin Oncol. 2010;28:2538–43.

    Article  CAS  PubMed  Google Scholar 

  25. Lee SH, Jeong SH, Park YS, et al. Serum prohepcidin levels in chronic hepatitis C, alcoholic liver disease, and nonalcoholic fatty liver disease. Korean J Hepatol. 2010;16:288–94.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480:147–50.

    Article  CAS  PubMed  Google Scholar 

  27. Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood. 2016;127:2809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. del Giudice EM, Santoro N, Amato A, et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab. 2009;94:5102–7.

    Article  PubMed  CAS  Google Scholar 

  29. Sasai M, Iso Y, Mizukami T, et al. Potential contribution of the hepcidin-macrophage axis to plaque vulnerability in acute myocardial infarction in human. Int J Cardiol. 2017;227:114–21.

    Article  PubMed  Google Scholar 

  30. Kuo HC, Yang YL, Chuang JH, et al. Inflammation-induced hepcidin is associated with the development of anemia and coronary artery lesions in Kawasaki disease. J Clin Immunol. 2012;32:746–52.

    Article  CAS  PubMed  Google Scholar 

  31. Gaskell H, Derry S, Moore RA. Is there an association between low dose aspirin and anemia (without overt bleeding)? Narrative review. BMC Geriatr. 2010;10:71.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kuo HC, Lo MH, Hsieh KS, Guo MM, Huang YH. High-dose aspirin is associated with anemia and does not confer benefit to disease outcomes in Kawasaki disease. PLoS One. 2015;10:e0144603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Le NT, Richardson DR. Ferroportin1: a new iron export molecule? Int J Biochem Cell Biol. 2002;34:103–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ward DM, Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta. 1823;2012:1426–33.

    Google Scholar 

  35. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    Article  CAS  PubMed  Google Scholar 

  36. Kim A, Nemeth E. New insights into iron regulation and erythropoiesis. Curr Opin Hematol. 2015;22:199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dallalio G, Law E, Means RT Jr. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood. 2006;107:2702–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank GR, Cherrick I, Karayalcin G, Valderrama E, Lanzkowsky P. Transient erythroblastopenia in a child with Kawasaki syndrome: a case report. Am J Pediatr Hematol Oncol. 1994;16:271–4.

    Article  CAS  PubMed  Google Scholar 

  39. Udali S, Guarini P, Ruzzenente A, et al. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics. 2015;7:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Huang YH, Kuo HC, Li SC, Cai XY, Liu SF, Kuo HC. HAMP promoter hypomethylation and increased hepcidin levels as biomarkers for Kawasaki disease. J Mol Cell Cardiol. 2018;117:82–7.

    Article  CAS  PubMed  Google Scholar 

  41. Tsai CM, Chu CH, Liu X, et al. A novel score system of blood tests for differentiating Kawasaki disease from febrile children. PLoS One. 2021;16:e0244721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jung M, Mertens C, Brune B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology. 2015;220:295–304.

    Article  CAS  PubMed  Google Scholar 

  43. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Corna G, Campana L, Pignatti E, et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica. 2010;95:1814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, YH., Kuo, HC. (2022). Anemia in Kawasaki Disease. In: Kuo, HC. (eds) Kawasaki Disease. Springer, Singapore. https://doi.org/10.1007/978-981-19-2944-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2944-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2943-4

  • Online ISBN: 978-981-19-2944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics