Skip to main content

An Three-Level Active NPC Inverter Open-Circuit Fault Diagnosis Using SVM and ANN

  • Conference paper
  • First Online:
Intelligent Sustainable Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 458))

  • 469 Accesses

Abstract

This paper has come up with a combination of Support Vector Machine (SVM) and Artificial Neural Network (ANN) for fault diagnosis of a single battery and inverter switch fault of an three-level active neutral-point clamped (ANPC) inverter. Moreover, a 3L-ANPC inverter is capable of gaining the EV’s controllability in the power train and need not have to halt even after the occurrence of the fault. Hence, an efficient fault diagnosis methodology is required in which battery fault is identified by an SVM which is a machine learning model that consists of sets of labeled training data with regression and classification challenges. Finally, when the fault arises in the ANPC inverter, the location of faulty switch can be identified by an ANN which determines the weights and threshold of the ANN and thus reduces the training time with increase in efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NPC:

Neutral-Point Clamped Inverter

3L-NPC:

Three-Level Neutral-Point Clamped Inverter

SVM:

Space Vector Modulation

ANPC:

Active Neutral-Point Clamped Inverter

MLI:

Multi-Level Inverters

IPMSM:

Interior Permanent Magnet Synchronous Machine

NPPF:

Neutral-Point Potential Fluctuation

JADE:

Joint Approximative Diagonalization of Eigen matrix

ICA:

Independent Component Analysis

NN:

Neural Network

CBM:

Carrier-Based Modulation

SVPWM:

Space Vector Pulse Width Modulation

IZSV:

Injected Zero Sequence Voltage

DPWM:

Discontinuous PWM

PMSM:

Permanent Magnet Synchronous Motor

PWM:

Pulse Width Modulation

CB-PWM:

Carrier-Based PWM

SVPWM:

Space Vector PWM

SHE:

Selective Harmonic Elimination

SiC:

Silicon-Carbide

IGBT:

Insulated Gate Bipolar Transistor

SVM:

Support Vector Machine

ANN:

Artificial Neural Network

References

  1. A. Sheir, M.Z. Youssef, A novel power balancing technique in neutral point clamping multilevel ınverters for the electric vehicle ındustry under distributed unbalance battery powering scheme, in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3304–3308 (2019). https://doi.org/10.1109/APEC.2019.8722183

  2. K. Kandasamy, D.M. Vilathgamuwa, K.J. Tseng, Double star chopper cell converter for battery electric vehicles with inter-module SoC balancing and fault tolerant control, in IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society (Dallas, TX, 2014), pp. 2991–2996

    Google Scholar 

  3. J. Rodriguez, J.-S. Lai, F.Z. Peng, Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Google Scholar 

  4. G.S. Lakshmi, O. Rubanenko, M.L. Swarupa, K. Deepika, Analysis of ANPCI & DCMLI fed to PMSM drive for electric vehicles, in 2020 IEEE India Council International Subsections Conference (INDISCON) (2020). https://doi.org/10.1109/indiscon50162.2020.00059

  5. X. Wan, H. Hu, Y. Yu, Open-circuit fault diagnosis for grid-connected NPC ınverter based on ındependent component analysis and neural network. TELKOMNIKA (Telecommun. Comput. Electron. Control) 15, 36 (2017). https://doi.org/10.12928/telkomnika.v15i1.3677

  6. A. Choudhury, P. Pillay, S.S. Williamson, Modified DC-bus voltage balancing algorithm based three-level neutral point clamped (NPC) IPMSM drive for electric vehicle application, in IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society (2014). https://doi.org/10.1109/iecon.2014.7048941

  7. S.-H. Kim, D.-Y. Yoo, S.-W. An, Y.-S. Park, J.-W. Lee, K.-B. Lee, Fault detection method using a convolution neural network for hybrid active neutral-point clamped inverters. IEEE Access 8, 140632–140642 (2020). https://doi.org/10.1109/ACCESS.2020.3011730

    Article  Google Scholar 

  8. A. Choudhury, P. Pillay, S.S. Williamson, A hybrid-PWM based DC-link voltage balancing algorithm for a 3-level neutral-point-clamped (NPC) DC/AC traction inverter drive, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1347–1352 (2015). https://doi.org/10.1109/APEC.2015.7104523

  9. M. Farhadi, M. Abapour, M. Sabahi, Failure analysis and reliability evaluation of modulation techniques for neutral point clamped inverters—a usage model approach. Eng. Fail. Anal. 71, 90–104 (2017). ISSN 1350-6307. https://doi.org/10.1016/j.engfailanal.2016.06.010

  10. J. Lee, R. Kwak, K. Lee, Novel discontinuous PWM method for a single-phase three-level neutral point clamped inverter with efficiency improvement and harmonic reduction. IEEE Trans. Power Electron. 33(11), 9253–9266 (2018). https://doi.org/10.1109/TPEL.2018.2794547

    Article  Google Scholar 

  11. X. Ge, J. Pu, B. Gou, Y. Liu, An open-circuit fault diagnosis approach for single-phase three-level neutral-point-clamped converters. IEEE Trans. Power Electron. 33(3), 2559–2570 (2018). https://doi.org/10.1109/TPEL.2017.2691804

    Article  Google Scholar 

  12. A. Nabae, I. Takahashi, H. Akagi, A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)

    Article  Google Scholar 

  13. M.T. Fard, M. Abarzadeh, K.A. Noghani, J. He, K. Al-Haddad, Si/SiC hybrid 5-level active NPC inverter for electric aircraft propulsion drive applications. Chin. J. Electr. Eng. 6(4), 63–76 (2020). https://doi.org/10.23919/CJEE.2020.000031

    Article  Google Scholar 

  14. Baghli, C. Delpha, D. Diallo, Hallouche, D. Mba, W. Tianzhen, Three-level NPC ınverter ıncipient fault detection and classification using output current statistical analysis. Energies 12, 1372 (2019). https://doi.org/10.3390/en12071372

  15. S. Monge, B. Bordonau, D. Boroyevich, S. Somavilla, The nearest three virtual space vector PWM—a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter. IEEE Trans. Power Electron. 2(1), 11–15 (2004)

    Google Scholar 

  16. J. Weidong, L. Wang, J. Wang, X. Zhang, P. Wang, A carrier-based virtual space vector modulation with active neutral point voltage control for neutral point clamped three-level inverter. IEEE Trans. Ind. Electron. 65(11), 8687–8696 (2018)

    Article  Google Scholar 

  17. A. Kersten et al., Fault detection and localization for limp home functionality of three-level NPC inverters with connected neutral point for electric vehicles. IEEE Trans. Transp. Electrification 5(2), 416–432 (2019). https://doi.org/10.1109/TTE.2019.2899722

    Article  Google Scholar 

  18. A. Choudhury, P. Pillay, Space vector based capacitor voltage balancing for a three-level NPC traction ınverter drive. IEEE J. Emerg. Sel. Top. Power Electron. 1–1 (2019). https://doi.org/10.1109/jestpe.2019.2953183

  19. H. Hu, F. Feng, T. Wang, Open-circuit fault diagnosis of NPC inverter IGBT based on independent component analysis and neural network. Energy Rep. 6(Supplement 9), 134–143 (2020). ISSN 2352-4847. https://doi.org/10.1016/j.egyr.2020.11.273

  20. X. Wu, G. Tan, G. Yao, C. Sun, G. Liu, A hybrid PWM strategy for three-level inverter with unbalanced DC links. IEEE J. Emerg. Sel. Top. Power Electron. 6(1), 1–15 (2018). https://doi.org/10.1109/jestpe.2017.2756999

    Article  Google Scholar 

  21. S. Mukherjee, S. Kumar Giri, S. Kundu, S. Banerjee, A generalized discontinuous PWM scheme for three-level NPC traction ınverter with minimum switching loss for electric vehicles. IEEE Trans. Ind. Appl. 55(1), 516–528 (2019). https://doi.org/10.1109/TIA.2018.2866565

  22. D. Floricau, E. Floricau, G. Gateau, Three-level active NPC converter: PWM strategies and loss distribution, in 2008 34th Annual Conference of IEEE Industrial Electronics (2008). https://doi.org/10.1109/iecon.2008.4758494

  23. R. Katebi, J. He, N. Weise, An advanced three-level active neutral-point-clamped converter with improved fault-tolerant capabilities. IEEE Trans. Power Electron. 33(8), 6897–6909 (2018). https://doi.org/10.1109/tpel.2017.2759760

    Article  Google Scholar 

  24. 6.6 kW three-phase, three-level ANPC ınverter/PFC bidirectional power stage reference design, in TIDUEZ0 (2021)

    Google Scholar 

  25. J. Li, A.Q. Huang, Z. Liang, S. Bhattacharya, Analysis and design of active NPC (ANPC) inverters for fault-tolerant operation of high-power electrical drives. IEEE Trans. Power Electron. 27(2), 519–533 (2012). https://doi.org/10.1109/tpel.2011.2143430

    Article  Google Scholar 

  26. Y. Yu, S. Pei, Open-circuit fault diagnosis of neutral point clamped three-level inverter based on sparse representation. IEEE Access 1–1 (2018). https://doi.org/10.1109/access.2018.2883219

  27. V. Balasubramaniam, Fault detection and diagnosis in air handling units with a novel integrated decision tree algorithm. J. Trends Comput. Sci. Smart Technol. 3(1), 49–58 (2021)

    Article  Google Scholar 

  28. T. Vijayakumar, Posed inverse problem rectification using novel deep convolutional neural network. J. Innov. Image Process. (JIIP) 2(03), 121–127 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selvakumar, P., Muthukumaran, G. (2022). An Three-Level Active NPC Inverter Open-Circuit Fault Diagnosis Using SVM and ANN. In: Raj, J.S., Shi, Y., Pelusi, D., Balas, V.E. (eds) Intelligent Sustainable Systems. Lecture Notes in Networks and Systems, vol 458. Springer, Singapore. https://doi.org/10.1007/978-981-19-2894-9_33

Download citation

Publish with us

Policies and ethics