Skip to main content

Maximization of Disjoint K-cover Using Computation Intelligence to Improve WSN Lifetime

  • Conference paper
  • First Online:
Intelligent Sustainable Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 458))

Abstract

WSNs have been used in different sectors of applications such as industrial, environmental, and social due to the progress of technology and the necessity. Because the network's sensors are restricted by battery power, network operations are important. The life extension of a wireless sensor network has been explored in this study by locating a large number of disjoint set coverings. All of the targets were covered by each separate group of sensors. Instead of maintaining all sensor nodes in operation, the only way to prolong the service life by about K times is to use the sensors of one cover while the sensors of the other covers are in sleep mode. This approach saves both energy and time by processing useful data and reducing duplicate data coming from different sensors in a region. Different configurations of sensor networks have been tested using an evolutionary computation-based computer intelligence technique, as well as a genetic algorithm and differential evolution. To make the solution possible, a local operator has been incorporated. With integer encoding of solutions in genetic algorithm performs better than differential evolution in finding a good number of disjoint set covers. Over a continuous search space, DE is highly efficient, but its efficiency has been hampered by integer transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Xu, J. Fang, W. Zhu, Differential evolution for lifetime maximization of heterogeneous wireless sensor networks. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/172783

    Article  MathSciNet  Google Scholar 

  2. N.H. Mak, W.K.G. Seah, How long is the lifetime of a wireless sensor network? Int. Conf. Adv. Inf. Netw. Appl. 2009, 763–770 (2009). https://doi.org/10.1109/AINA.2009.138.2016

    Article  Google Scholar 

  3. H. Yetgin, K.T.K. Cheung, M. El-Hajjar, L.H. Hanzo, A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Commun. Surv. Tutorials 19(2), 828–854, Second quarter 2017, https://doi.org/10.1109/COMST.2017.2650979

  4. H.U. Yıldız, B. Tavlı, B.O. Kahjogh, Assessment of wireless sensor network lifetime reduction due to elimination of critical node sets, in 2017 25th Signal Processing and Communications Applications Conference (SIU), 2017, pp. 1–4. https://doi.org/10.1109/SIU.2017.7960228

  5. C.C. Lin, Y.C. Chen, J.L. Chen et al., Lifetime enhancement of dynamic heterogeneous wireless sensor networks with energy-harvesting sensors. Mob. Netw. Appl. 22, 931–942 (2017)

    Article  Google Scholar 

  6. F. El Hajji, C. Leghris, K. Douzi, Adaptive routing protocol for lifetime maximization in multi-constraint wireless sensor networks. J. Commun. Inf. Netw. 3, 67–83 (2018). https://doi.org/10.1007/s41650-018-0008-3

    Article  Google Scholar 

  7. T.A. Alghamdi, Energy efficient protocol in wireless sensor network: Optimized cluster head selection model. Telecommun. Syst. 74, 331–345 (2020). https://doi.org/10.1007/s11235-020-00659-9

    Article  Google Scholar 

  8. B.A. Attea, E.A. Khalil, S. Özdemir et al., A multi-objective disjoint set covers for reliable lifetime maximization of wireless sensor networks. Wirel. Pers. Commun. 81, 819–838 (2015). https://doi.org/10.1007/s11277-014-2159-3

    Article  Google Scholar 

  9. M.K. Singh, Discovery of redundant free maximum disjoint Set-k-covers for WSN life enhancement with evolutionary ensemble architecture. Evol. Intel. 13, 611–630 (2020). https://doi.org/10.1007/s12065-020-00374-z

    Article  Google Scholar 

  10. M.F. Abdulhalim, B.A. Attea, Multi-layer genetic algorithm for maximum disjoint reliable set covers problem in wireless sensor networks. Wirel. Pers. Commun. 80, 203–227 (2015). https://doi.org/10.1007/s11277-014-2004-8

    Article  Google Scholar 

  11. X. Yuan, M. Elhoseny, H.K. El-Minir et al., A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. J. Netw. Syst. Manage. 25, 21–46 (2017). https://doi.org/10.1007/s10922-016-9379-7

    Article  Google Scholar 

  12. M. Elhoseny, A.E. Hassanien, Extending homogeneous WSN lifetime in dynamic environments using the clustering model, in Dynamic Wireless Sensor Networks. Studies in Systems, Decision, and Control, vol. 165 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-92807-4_4

  13. M. Ayati, M.H. Ghayyoumi, A. Keshavarz-Mohammadiyan, A fuzzy three-level clustering method for lifetime improvement of wireless sensor networks. Ann. Telecommun. 73, 535–546 (2018). https://doi.org/10.1007/s12243-018-0631-x

    Article  Google Scholar 

  14. J. Sahoo, B. Sahoo, Solving target coverage problem in wireless sensor networks using greedy approach, in 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA) (2020), pp. 1–4. https://doi.org/10.1109/ICCSEA49143.2020.9132907

  15. A.R. Aravind, R. Chakravarthi, N.A. Natraj, Optimal mobility based data gathering scheme for life time enhancement in wireless sensor networks, in 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP) (2020), pp. 1–5, https://doi.org/10.1109/ICCCSP49186.2020.9315275

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Shanthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shanthi, D.L. (2022). Maximization of Disjoint K-cover Using Computation Intelligence to Improve WSN Lifetime. In: Raj, J.S., Shi, Y., Pelusi, D., Balas, V.E. (eds) Intelligent Sustainable Systems. Lecture Notes in Networks and Systems, vol 458. Springer, Singapore. https://doi.org/10.1007/978-981-19-2894-9_17

Download citation

Publish with us

Policies and ethics