Skip to main content

Simulation Tools and Methods for Supercritical Carbon Dioxide Radial Inflow Turbine

Development and Application on Open-Source Code

  • Book
  • © 2022

Overview

  • Assesses the feasibility of supercritical CO2 radial turbine
  • Bridges the gap between mean-line codes and time-consuming full CFD with new tools
  • Proposes optimized geometries for radial inflow turbine stators
  • 1462 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

To protect the Earth, China has launched its target of peaking carbon dioxide emissions by 2030, and achieving carbon neutrality by 2060 , which greatly encourages  the use and development of renewable energy. 

Supercritical CO2 power cycle is a promising technology and the radial inflow turbine is  the most important component of it, whose design and optimisation are considered as great challenges. This book introduces simulation tools and methods for supercritical CO2 radial inflow turbine, including a high fidelity quasi-one-dimensional design procedure, a non-ideal compressible fluid dynamics Riemann solver within open-source CFD software OpenFOAM framework, and a multi-objective Nelder–Mead geometry optimiser. Enhanced one-dimensional loss models are presented for providing a new insight towards the preliminary design of the supercritical CO2 radial inflow turbine. Since the flow phenomena within the blade channels are complex, involving fluid flow, shock wave transmission and boundary layer separation, only employing the ideal gas model is inadequate to predict the performance of the turbine. Thus, a non-ideal compressible fluid dynamics Riemann solver based on OpenFOAM library is developed. This book addresses the issues related to the turbine design and blade optimization and provides leading techniques. Hence, this book is of great value for the readers working on the supercritical CO2 radial inflow turbine and understanding the knowledge  of CFD and turbomachinery.

Similar content being viewed by others

Keywords

Table of contents (8 chapters)

Authors and Affiliations

  • School of Energy and Power Engineering, Shandong University, Jinan, China

    Jianhui Qi

About the author

Dr. Jianhui Qi was born in November 1989. He has obtained his Bachelor and Master of Engineering at the Shandong University, in 2012 and 2015 respectively. He has got his Ph.D. in turbomachinery at the University of Queensland on March 1st, 2019. Currently, Dr. Qi serves as an associate professor at the School of Energy and Power Engineering at the Shandong University. His research interests include the design and optimisation of supercritical CO2 radial inflow turbines, turbomachinery (axial and radial) for energy conversion and propulsion, modeling of fluid- and thermodynamic systems (mainly the sCO2 Brayton cycles), and clean combustion and pollutant controlling for biomass fuels. He has participated in the concentrated solar power generation project led by the Australian Solar Thermal Research Initiative (ASTRI). He has carried out the research on supercritical CO2 radial inflow turbine selection, design, performance simulation and geometry optimisation for 1 MW power system. At present, he leads more than 10 national and provincial research projects.

Bibliographic Information

Publish with us