Skip to main content

Carbon Materials for Dye Removal from Wastewater

  • Chapter
  • First Online:
Textile Wastewater Treatment

Abstract

Sustainable water management is a challenge all over the world because of contamination by different pollutants such as dyes. This is a major environmental and health problem. There are a number of methods for the removal of dyes but all the methods have one or the other type of demerit. Among all the methods, the adsorption process using different types of adsorbents is a cost-effective and efficient technique for removing toxic dyes from wastewater. There are varieties of dyes, which have different stabilities and are removed by different types of adsorbents. The most widely used adsorbent is commercially available activated carbon, which can be obtained from different sources. In addition, different forms of carbons such as carbon nanotubes and carbon nanotube-based buckypaper, porous carbonaceous materials and their composites, agricultural-based activated carbons, metal-doped porous carbon materials, graphene oxide, and other forms of carbon have been used for dye removal from water by adsorption technique. In this chapter, different types of pollutants particularly dyes, methods of removal, preparation of carbons of different form, their characterization, and removal of dyes by adsorption under different conditions such as different pH, temperature, adsorbate doses, etc. have been discussed in detail. Different isotherm and kinetic models have been discussed in order to understand the mechanism of adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulraheem G, Bala S, Muhammad S, Abdullahi M (2015) Kinetics, equilibrium and thermodynamics studies of CI Reactive Blue 19 dye adsorption on coconut shell based AC. Int Biodeterior Biodegradation 102:265–273

    Article  Google Scholar 

  2. Aboua KN, Yobouet YA, Yao KB, Gone DL, Trokourey A (2015) Investigation of dye adsorption onto AC from the shells of Macoré fruit. J Environ Manag 156:10–14

    Article  CAS  Google Scholar 

  3. Abualnaja KM, Alprol AE, Ashour M, Mansour AT (2021) Influencing Multi-Walled Carbon nanotubes for the removal of Ismate violet 2R dye from wastewater: isotherm, kinetics, and thermodynamic studies. Appl Sci 11(11):4786–4812

    Article  CAS  Google Scholar 

  4. Agbozu IE, Emoruwa FO (2014) Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from aqueous solutions using coconut husk. Afr J Environ Sci Technol 8(4):239–246

    Article  CAS  Google Scholar 

  5. Ahmad ZU, Yao L, Wang J, Gang DD, Islam F, Lian Q, Zappi ME (2019) Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: characterizations, adsorption study and adsorption mechanism. Chem Eng J 359:814–826

    Article  CAS  Google Scholar 

  6. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290

    Article  CAS  Google Scholar 

  7. Amin NK (2008) Removal of reactive dye from aqueous solutions by adsorption onto ACs prepared from sugarcane bagasse pith. Desalination 223(1–3):152–161

    Article  CAS  Google Scholar 

  8. Amin NK (2009) Removal of direct blue-106 dye from aqueous solution using new ACs developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater 165(1–3):52–62

    Article  CAS  Google Scholar 

  9. Anastopoulos I, Karamesouti M, Mitropoulos AC, Kyzas GZ (2017) A review for coffee adsorbents. J Mol Liq 229:555–565

    Article  CAS  Google Scholar 

  10. Aslam MMA, Kuo HW, Den W, Usman M, Sultan M, Ashraf H (2021) Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: preparation to application. Sustainability 13(10):5717. https://doi.org/10.3390/su13105717

    Article  CAS  Google Scholar 

  11. Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA (2015) Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties. J Mol Liq 206:176–182. https://doi.org/10.1016/j.molliq.2015.02.028

    Article  CAS  Google Scholar 

  12. Bagotia N, Sharma AK, Kumar S (2020) A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 129309

    Google Scholar 

  13. Baseri JR, Palanisamy PN, Sivakumar P (2012) Preparation and characterization of AC from Thevetia peruviana for the removal of dyes from textile waste water. Adv Appl Sci Res 3(1):377–383

    Google Scholar 

  14. Bayazit ŞS (2014) Magnetic multi-wall carbon nanotubes for methyl orange removal from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Sep Sci Technol 49(9):1389–1400

    Article  CAS  Google Scholar 

  15. Benkhaya S, M’rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891

    Article  CAS  Google Scholar 

  16. Bulgariu L, Escuder LB, Bello OS, Nisar MJ, Adegoke KA, Michael FA, Anastopoulos K (2019) The utilization of leaf-based adsorbents for dyes removal: A review. J Mol Liq 276:728–747

    Google Scholar 

  17. Chen S, Tang S, Sun Y, Wang G, Chen H, Yu X, Su Y, Chen G (2018) Preparation of a highly porous carbon material based on quinoa husk and its application for removal of dyes by adsorption. Materials 11(8):1407. https://doi.org/10.3390/ma11081407

    Article  CAS  Google Scholar 

  18. Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1(6):1992–2001

    Google Scholar 

  19. Chukwu UJ, John EP, Kalagbor AI (2017) Adsorption of Cu2+ and Fe2+ from single metal ion solution using unmodified and formaldehyde modified kola-nut (Cola nitida) testa. OSR J Appl Chem (IOSR-JAC) 10(12):12–18

    Google Scholar 

  20. Demiral H, Demiral I, Karabacakoğlu B, Tümsek F (2008) Adsorption of textile dye onto AC prepared from industrial waste by ZnCl2 activation. J Int Environ Appl Sci 3(5):381–389

    CAS  Google Scholar 

  21. Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Bazrafshan AA, Tayebi L (2019) Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of basic red 46 dye. Ultrason Sonochem 58:104702

    Google Scholar 

  22. Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M (2015) Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem Eng 53:112–121

    Google Scholar 

  23. Dong R, Zhang Q, Gao W, Pei A, Ren B (2016) Highly efficient light-driven TiO2–Au Janus micromotors. ACS nano 10(1):839–844

    Google Scholar 

  24. Duan Q, Lee J, Liu Y, Qi H (2016) Preparation and photocatalytic performance of MWCNTs/TiO2 nanocomposites for degradation of aqueous substrate. J Chem https://doi.org/10.1155/2016/1262017

  25. Duman O, Tunç S, Polat TG, Bozoğlan BK (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption. Carbohydr Polym 147:79–88

    Google Scholar 

  26. El-Shafey EI, Ali SNF, Al-Busafi S, Al-Lawati HAJ (2016) Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal. J Environ Chem Eng 4:2713–2724

    Google Scholar 

  27. Fabon MB, Legaspi GJ, Leyesa K, Macawile MC (2013) Removal of basic dye in water matrix using AC from sugarcane bagasse. In: International conference on innovations in engineering and technology, pp 198–201

    Google Scholar 

  28. Fan L, Luo C, Li X, Lu F, Qiu H, Sun M (2012) Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater 215:272–279

    Google Scholar 

  29. Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL (2014) Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Ind Crops Prod 62:437–445

    Google Scholar 

  30. Ferreira GMD, Ferreira GMD, Hespanhol MC, de Paula Rezende J, dos Santos Pires AC, Gurgel LVA, da Silva LHM (2017) Adsorption of red azo dyes on multi-walled carbon nanotubes and AC: a thermodynamic study. Colloids Surf A: Physicochem Eng Asp 529:531–540

    Google Scholar 

  31. Foo KY, Hameed BH (2011) Microwave assisted preparation of AC from pomelo skin for the removal of anionic and cationic dyes. Chem Eng J 173(2):385–390

    Article  CAS  Google Scholar 

  32. Ganesan V, Louis C, Damodaran SP (2018) Graphene oxide-wrapped magnetite nanoclusters: a recyclable functional hybrid for fast and highly efficient removal of organic dyes from wastewater. J Environ Chem Eng 6(2):2176–2190

    Google Scholar 

  33. Georgin J, Dotto GL, Mazutti MA, Foletto EL (2016) Preparation of AC from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. J Environ Chem Eng 4(1):266–275

    Article  CAS  Google Scholar 

  34. Ghaedi M, Ansari A, Habibi MH, Asghari AR (2014) Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. J Ind Eng Chem 20(1):17–28

    Google Scholar 

  35. Ghaedi M, Ghaedi AM, Mirtamizdoust B, Agarwal S, Gupta VK (2016) Simple and facile sonochemical synthesis of lead oxide nanoparticles loaded activated carbon and its application formethyl orange removal from aqueous phase. J Mol Liq 213:48–57

    Google Scholar 

  36. Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S (2014) Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. J Ind Eng Chem 20:2317–2324

    Google Scholar 

  37. Ghasemi E, Heydari A, Sillanp M (2019) Central composite design for optimization of removal of trace amounts of toxic heavy metal ions from aqueous solution using magnetic Fe3O4 functionalized by guanidine acetic acid as an efficient nano-adsorbent. Micro Chem J 147:133–141

    Article  CAS  Google Scholar 

  38. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2–3):1517–1522

    Article  CAS  Google Scholar 

  39. Goscianska J, Marciniak M, Pietrzak R (2014) Mesoporous carbons modified with lanthanum (III) chloride for methyl orange adsorption. Chem Eng J 247:258–264

    Article  CAS  Google Scholar 

  40. Goscianska J, Marciniak M, Pietrzak R (2015) Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal. Sep Purif Technol 154:236–245

    Article  CAS  Google Scholar 

  41. Guo F, Jiang X, Li X, Jia X, Liang S, Qian L (2020) Synthesis of MgO/Fe3O4 nanoparticles embedded AC from biomass for high-efficient adsorption of malachite green. Mater Chem Phys 240:122240

    Article  CAS  Google Scholar 

  42. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Coll Interface Sci 193:24–34

    Article  Google Scholar 

  43. Gupta VK, Nayak A, Bhushan B, Agarwal S (2015) A critical analysis on the efficiency of ACs from low-cost precursors for heavy metals remediation. Crit Rev Environ Sci Technol 45(6):613–668

    Article  Google Scholar 

  44. Gusain R, Kumar N, Ray SS (2020) Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 405:213111

    Article  CAS  Google Scholar 

  45. Hazzaa R, Hussein M (2015) Adsorption of cationic dye from aqueous solution onto AC prepared from olive stones. Environ Technol Innov 4:36–51

    Article  Google Scholar 

  46. He X, Büchel R, Figi R, Zhang Y, Bahk Y, Ma J, Wang J (2019) High-performance carbon/MnO2 micromotors and their applications for pollutant removal. Chemosphere 219:427–435. https://doi.org/10.1016/j.colsurfa.2017.06.021

    Article  CAS  Google Scholar 

  47. Heibati B, Rodriguez-Couto S, Al-Ghouti MA, Asif M, Tyagi I, Agarwal S, Gupta VK (2015) Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using ACs prepared from walnut and poplar woods. J Mol Liq 208:99–105

    Article  CAS  Google Scholar 

  48. Hesas RH, Arami-Niya A, Daud WMAW, Sahu JN (2013) Preparation and characterization of AC from apple waste by microwave-assisted phosphoric acid activation: application in methylene blue adsorption. BioResources 8(2):2950–2966

    Google Scholar 

  49. Hu L, Yang Z, Wang Y, Li Y, Fan D, Wu D, Wei Q, Du B (2017) Facile preparation of water-soluble hyperbranched polyamine functionalized multiwalled carbon nanotubes for high-efficiency organic dye removal from aqueous solution. Sci Rep 7(1):1–13

    Google Scholar 

  50. Hu X, Zou C, Zou X (2019) The formation of supramolecular carbon nanofiber via amidation reaction on the surface of amino single walled carbon nanotubes for selective adsorption organic pollutants. J Colloid Interface Sci 542:112–122. https://doi.org/10.1016/j.jcis.2019.01.130

    Article  CAS  Google Scholar 

  51. Hu H, Wageh S, Al-Ghamdi AA, Yang S, Tian Z, Cheng B, Ho W (2020) NiFe-LDH nanosheet/carbon fiber nanocomposite with enhanced anionic dye adsorption performance. Appl Surf Sci 511:145570

    Google Scholar 

  52. Ibrahim RK, El-Shafie A, Hin LS, Mohd NSB, Aljumaily MM, Ibraim S, AlSaadi MA (2019) A clean approach for functionalized carbon nanotubes by deep eutectic solvents and their performance in the adsorption of methyl orange from aqueous solution. J Environ Manag 235:521–534. https://doi.org/10.1016/j.jenvman.2019.01.070

    Article  CAS  Google Scholar 

  53. Jiang W, Zhang L, Guo X, Yang M, Lu Y, Wang Y, Zheng Y, Wei G (2021) Adsorption of cationic dye from water using an iron oxide/AC magnetic composites prepared from sugarcane bagasse by microwave method. Environ Technol 42(3):337–350

    Article  CAS  Google Scholar 

  54. Juang RS, Yei YC, Liao CS, Lin KS, Lu HC, Wang SF, Sun AC (2018) Synthesis of magnetic Fe3O4/AC nanocomposites with high surface area as recoverable adsorbents. J Taiwan Inst Chem Eng 90:51–60

    Article  CAS  Google Scholar 

  55. Jun LY, Mubarak NM, Yee MJ, Yon LS, Bing CH, Khalid M, Abdullah EC (2018) An overview of functionalised carbon nanomaterial for organic pollutant removal. J Ind Eng Chem 67:175–186. https://doi.org/10.1016/j.jiec.2018.06.028

    Article  CAS  Google Scholar 

  56. Jung KW, Choi BH, Hwang MJ, Jeong TU, Ahn KH (2016) Fabrication of granular ACs derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Biores Technol 219:185–195

    Article  CAS  Google Scholar 

  57. Karami P, Khasraghi SS, Hashemi M, Rabiei S, Shojaei A (2019) Polymer/nanodiamond composites—a comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interface Sci 269:122–151

    Google Scholar 

  58. Khan FSA, Mubarak NM, Tan YH, Khalid M, Karri RR, Walvekar R, Abdullah EC, Nizamuddin S, Mazari SA (2021) A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper-heavy metal and dyes removal. J Hazard Mater 125375

    Google Scholar 

  59. Kim JR, Santiano B, Kim H, Kan E (2013) Heterogeneous oxidation of methylene blue with surface-modified iron-amended AC

    Google Scholar 

  60. Kumar A, Jena HM (2016) Removal of methylene blue and phenol onto prepared AC from Fox nutshell by chemical activation in batch and fixed-bed column. J Clean Prod 137:1246–1259

    Article  CAS  Google Scholar 

  61. Kumar GV, Rajeev K, Arunima N, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Coll Interface Sci 193–194:24–34

    Google Scholar 

  62. Kumari P, Alam M, Siddiqi WA (2019) Usage of nanoparticles as adsorbents for waste water treatment an emerging trend. Sustain Mater Technol 22:00128

    Google Scholar 

  63. Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, Jagadish P, Abdullah EC (2020) Removal of dye using peroxidase-immobilized Buckypaper/polyvinyl alcohol membrane in a multi-stage filtration column via RSM and ANFIS. Environ Sci Pollut Res 27(32):40121–40134

    Google Scholar 

  64. Liu Z, Fang Y, Jia H, Wang C, Song Q, Li L, Lin J, Huang Y, Yu C, Tang C (2018) Novel multifunctional cheese-like 3D carbon-BN as a highly efficient adsorbent for water purification. Sci Rep 8(1):1–11

    Google Scholar 

  65. Liu C, Liu H, Xu A, Tang K, Huang Y, Lu C (2017) In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J Alloy Compd 714:522–529

    Article  CAS  Google Scholar 

  66. Liu X, Tian J, Li Y, Sun N, Mi S, Xie Y, Chen Z (2019) Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized AC. J Hazard Mater 373:397–407

    Article  CAS  Google Scholar 

  67. Liu X, Wang X, Xing X, Li Q, Yang J (2015) Visible light photocatalytic activities of carbon nanotube/titanic acid nanotubes derived-TiO2 composites for the degradation of methylene blue. Adv Powder Technol 26(1):8–13

    Article  CAS  Google Scholar 

  68. Luo Z, He Y, Zhi D, ,Luo L, Sun Y, Khan E, Wang L, Peng Y, Zhou Y, Tsang DCW (2019) Current progress in treatment techniques of triclosan from wastewater: a review. Sci Total Environ 696:13399

    Google Scholar 

  69. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    Article  CAS  Google Scholar 

  70. Mahamad MN, Zaini MAA, Zakaria ZA (2015) Preparation and characterization of AC from pineapple waste biomass for dye removal. Int Biodeterior Biodegradation 102:274–280

    Article  CAS  Google Scholar 

  71. Mahmoodian H, Moradi O, Shariatzadeha B, Salehf TA, Tyagi I, Maity A, Asif M, Gupta VK (2015) Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan-MWCNT nano-composite. J Mol Liq 202:189–198

    Article  CAS  Google Scholar 

  72. Miandad R, Kumar R, Barakat MA, Basheer C, Aburiazaiza AS, Nizami AS, Rehan M (2018) Untapped conversion of plastic waste char into carbon-metal LDOs for the adsorption of Congo red. J Colloid Interface Sci 511:402–410

    Article  CAS  Google Scholar 

  73. Miandad R, Kumar R, Barakat MA, Basheer C, Aburiazaiza AS, Nizami AS, Rehan M (2018) Untapped conversion of plastic waste char into carbon-metal LDOs for the adsorption of Congo red. J Colloid Interface Sci 511:402-410

    Google Scholar 

  74. Mishra S, Cheng L, Maiti A (2020) The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: a comprehensive review. J Environ Chem Eng 104901

    Google Scholar 

  75. Molavi H, Shojaei A, Pourghaderi A (2018) Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond. J Colloid Interface Sci 524:52–64

    Article  CAS  Google Scholar 

  76. Moosavi S, Gan S, Zakaria S (2019) Functionalized cellulose beads with AC Fe3O4/CoFe2O4 for cationic dye removal. Cellul Chem Technol 53:815–825

    Article  CAS  Google Scholar 

  77. Moosavi S, Lai CW, Gan S, Zamiri G, AkbarzadehPivehzhani O, Johan MR (2020) Application of efficient magnetic particles and AC for dye removal from wastewater. ACS Omega 5(33):20684–20697

    Article  CAS  Google Scholar 

  78. Myneni VR, Kala NS, Kanidarapu NR, Vangalapati M (2019) Modelling and optimization of methylene blue adsorption onto magnesium oxide nanoparticles loaded onto AC (MgONP-AC): response surface methodology and artificial neural networks. Mater Today: Proc 18:4932–4941

    CAS  Google Scholar 

  79. Namasivayam C, Sangeetha D (2006) Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. J Hazard Mater B135:449–452

    Google Scholar 

  80. Nekouei F, Noorizadeh H, Nekouei S, Asif M, Tyagi I, Agarwal S (2016) Removal of malachite green from aqueous solutions by cuprous iodide–cupric oxide nano-composite loaded on AC as a new sorbent for solid phase extraction: isotherm, kinetics and thermodynamic studies. J Mol Liq 213:360–368

    Article  CAS  Google Scholar 

  81. Njoku VO, Foo KY, Asif M, Hameed BH (2014) Preparation of ACs from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem Eng J 250:198–204

    Article  CAS  Google Scholar 

  82. Palma C, Lloret L, Puen A, Tobar M, Contreras E (2016) Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chin J Chem Eng 24(4):521–528

    Article  CAS  Google Scholar 

  83. Pan Y, Liu X, Zhang W, Liu Z, Zeng G, Shao B, Liang Q, He Q, Yuan X, Huang D, Chen M (2020) Advances in photocatalysis based on fullerene C60 and its derivatives: properties, mechanism, synthesis, and applications. Appl Catal B 265:118579

    Article  CAS  Google Scholar 

  84. Pargoletti E, Pifferi V, Falciola L, Facchinetti G, Depaolini AR, Davoli E, Marelli M, Cappelletti G (2019) A detailed investigation of MnO2 nanorods to be grown onto AC. High efficiency towards aqueous methyl orange adsorption/degradation. Appl Surf Sci 472:118–126

    Article  CAS  Google Scholar 

  85. Patent Application Publication US 2013/0147788A1 (2013)

    Google Scholar 

  86. Peláez-Cid AA, Herrera-González AM, Salazar-Villanueva M, Bautista-Hernández A (2016) Elimination of textile dyes using ACs prepared from vegetable residues and their characterization. J Environ Manag 181:269–278

    Google Scholar 

  87. Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int 134:105298

    Article  CAS  Google Scholar 

  88. Potirak, Pecharapa W, Techitdheera W (2014) Microwave-assisted synthesis of ZnO/MWCNT hybrid nanocomposites and their alcohol-sensing properties. J Exp Nanosci 9(1):96–105. https://doi.org/10.1080/17458080.2013.820848

  89. Prajapati AK, Mondal MK (2020) Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous AC prepared from waste coconut shell. J Mol Liq 307:112949

    Article  CAS  Google Scholar 

  90. Prajapati AK, Mondal MK (2020) Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. J Mol Liq 307:112949

    Google Scholar 

  91. Prola LD, Machado FM, Bergmann CP, de Souza FE, Gally CR, Lima EC, Adebayo MA, Dias SL, Calvete T (2013) Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and AC. J Environ Manag 130:166–175

    Article  CAS  Google Scholar 

  92. Qi Y, Yang M, Xu W, He S, Men Y (2017) Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J Colloid Interface Sci 486:84–96

    Article  CAS  Google Scholar 

  93. Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater 160(2–3):643–647

    Article  CAS  Google Scholar 

  94. Ragupathy S, Raghu K, Prabu (2015) Synthesis and characterization of TiO2 loaded cashew nut shell AC and photocatalytic activity on BG and MB dyes under sunlight radiation. Spectrochim Acta Part A: Mol Biomol Spectrosc 138:314–320

    Google Scholar 

  95. Rajabi M, Mahanpoor K, Moradi O (2017) Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv 7(74):47083–47090

    Article  CAS  Google Scholar 

  96. Rashid M, Ralph SF (2017) Carbon nanotube membranes: synthesis, properties, and future filtration applications. Nanomaterials 7(5):99

    Google Scholar 

  97. Ray SS, Gusain R, Kumar N (2020) Carbon nanomaterial-based adsorbents for water purification: fundamentals and applications. Elsevier

    Google Scholar 

  98. Ribas MC, Adebayo MA, Prola LD, Lima EC, Cataluña R, Feris LA, Puchana-Rosero MJ, Machado FM, Pavan FA, Calvete T (2014) Comparison of a homemade cocoa shell AC with commercial AC for the removal of reactive violet 5 dye from aqueous solutions. Chem Eng J 248:315–326

    Article  CAS  Google Scholar 

  99. Roosta M, Ghaedi M, Sahraei R, Purkait MK (2015) Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded AC: optimized experimental design. Mater Sci Eng C 52:82–89

    Article  CAS  Google Scholar 

  100. Ruiz B, Ferrera-Lorenzo N, Fuente E (2017) Valorisation of lignocellulosic wastes from the candied chestnut industry. Sustainable ACs for environmental applications. J Environ Chem Eng 5(2):1504–1515

    Google Scholar 

  101. Sadegh H, Zare K, Maazinejad B, Shahryari-Ghoshekandi R, Tyagi I, Agarwal S, Gupta VK (2016) Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal. J Mol Liq 215:221–228

    Article  CAS  Google Scholar 

  102. Saleh TA, Al-Absi AA (2017) Kinetics, isotherms and thermodynamic evaluation of amine functionalized magnetic carbon for methyl red removal from aqueous solutions. J Mol Liq 248:577–585

    Google Scholar 

  103. Sarkar B, Mandal S, Tsang YF, Kumar, Kim KH, Ok YS (2018) Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Sci Total Environ 612:561–581

    Google Scholar 

  104. Sayğılı H, Güzel F, Önal Y (2015) Conversion of grape industrial processing waste to AC sorbent and its performance in cationic and anionic dyes adsorption. J Clean Prod 93:84–93

    Google Scholar 

  105. Sayğılı H, Güzel F (2016) High surface area mesoporous AC from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod 113:995–1004

    Google Scholar 

  106. Shahbazi D, Mousavi SA, Nayeri D (2020) Low-cost AC: characterization, decolorization, modeling, optimization and kinetics. Int J Environ Sci Te 17(1):3935–3946

    Article  CAS  Google Scholar 

  107. Shamsizadeh A, Ghaedi M, Ansari A, Azizian S, Purkait MK (2014) Tin oxide nanoparticle loaded on AC as new adsorbent for efficient removal of malachite green-oxalate: non-linear kinetics and isotherm study. J Mol Liq 195:212–218

    Article  CAS  Google Scholar 

  108. Shen Y, Zhu X, Zhu L, Chen B (2017) Synergistic effects of 2D graphene oxide nanosheets and 1D carbon nanotubes in the constructed 3D carbon aerogel for high performance pollutant removal. Chem Eng J 314:336–346

    Article  CAS  Google Scholar 

  109. Shi Q, Zhang J, Zhang C, Li C, Zhang B, Hu W, Xu J, Zhao R (2010) Preparation of AC from cattail and its application for dyes removal. J Environ Sci 22(1):91–97

    Article  CAS  Google Scholar 

  110. Siji C, Shanshan T, Yang S, Gang W, Huan C, Xiaoxiao Y, Yingjie S, Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of food stuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    Google Scholar 

  111. Singh NB, Garima N, Agrawal S, Rachna (2018) Water purification by adsorbents a: review. Environ Technol Innov 11:187–240

    Google Scholar 

  112. Sinha S, Gusain RR, Kumar N (2020) Carbon nanomaterials: synthesis, functionalization, and properties. Carbon nanomaterial-based adsorbents for water purification in fundamentals and applications. https://doi.org/10.1016/B978-0-12-821959-1.00007-6

  113. Solovev AA, Sanchez S, Pumera M, Mei YF, Schmidt OG (2010) Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv Func Mater 20(15):2430–2435

    Article  CAS  Google Scholar 

  114. Sukhanova A, Bozrova S, Sokolov Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):1–21

    Google Scholar 

  115. Syrgiannis Z, Melchionna M, Prato M (2014) Covalent carbon nanotube functionalization. In: Kobayashi S, Mullen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1–8. https://doi.org/10.1007/978-3-642-36199-9_363-1

  116. Tarigh GD, Shemirani F, Maz’hari NS (2015) Fabrication of a reusable magnetic multi-walled carbon nanotube–TiO2 nanocomposite by electrostatic adsorption: enhanced photodegradation of malachite green. RSC Adv 5:35070–35079. https://doi.org/10.1039/c4ra1

  117. Teimouri Z, Salem A, Salem S (2019) Regeneration of wastewater contaminated by cationic dye by nanoporous AC produced from agriculture waste shells. Environ Sci Pollut Res 26(8):7718–7729

    Article  CAS  Google Scholar 

  118. Teka T, Enyew S (2014) Study on effect of different parameters on adsorption efficiency of low cost activated orange peels for the removal of methylene blue dye. Int J Innov Sci Res 8:106–111. ISSN 2351-8014

    Google Scholar 

  119. Thakur K, Kandasubramanian B (2019) Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64(3):833–867

    Article  CAS  Google Scholar 

  120. Tuzen M, Sarı A, Saleh TA (2018) Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J Environ Manag 206:170–177

    Article  CAS  Google Scholar 

  121. Un UT, Ates F, Erginel N, Ozcan O, Oduncu E (2015) Adsorption of disperse orange 30 dye onto AC derived from holm oak (Quercus Ilex) acorns: a 3k factorial design and analysis. J Environ Manag 155:89–96

    Article  Google Scholar 

  122. Vargas AM, Cazetta AL, Martins AC, Moraes JC, Garcia EE, Gauze GF, Costa WF, Almeida VC (2012) Kinetic and equilibrium studies: adsorption of food dyes Acid Yellow 6, Acid Yellow 23, and Acid Red 18 on AC from flamboyant pods. Chem Eng J 181:243–250

    Article  Google Scholar 

  123. Verma VK, Mishra AK (2010) Kinetic and isotherm modeling of adsorption of dyes onto rice husk carbon. Global NEST J 12(2):190–196

    Google Scholar 

  124. Wang Y, Chen J, Tang W, Xia D, Liang Y, Li X (2019) Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms. Chemosphere 214:79–84. https://doi.org/10.1016/j.chemosphere.2018.09.074

    Article  CAS  Google Scholar 

  125. Wang H, Pumera M (2015) Fabrication of micro/nanoscale motors. Chem Rev 115(16):8704–8735

    Article  CAS  Google Scholar 

  126. Wang F, Zhang J, Jia DM (2019) Facile synthesis of shell-core structured Fe3O4@ACS as recyclable magnetic adsorbent for methylene blue removal. J Dispersion Sci Technol 40(12):1736–1743

    Article  CAS  Google Scholar 

  127. Wang H-D, Yang Q, Niu CH, BadeaIldiko (2012) Adsorption of azo dye onto nanodiamond surface. Diamond Relat Mater 26:1–6

    Google Scholar 

  128. Wen X, Liu H, Zhang L, Zhang J, Fu C, Shi X, Chen X, Mijowska E, Chen MJ, Wang DY (2019) Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Biores Technol 272:92–98. https://doi.org/10.1016/j.biortech.2018.10.011

    Article  CAS  Google Scholar 

  129. Wong KT, Eu NC, Ibrahim S, Kim H, Yoon Y, Jang M (2016) Recyclable magnetite-loaded palm shell-waste based AC for the effective removal of methylene blue from aqueous solution. J Clean Prod 115:337–342

    Article  CAS  Google Scholar 

  130. Wu HC, Chang X, Liu L, Zhao F, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20(6):1036–1052. https://doi.org/10.1039/b911099m

    Article  CAS  Google Scholar 

  131. Wu K, Yu J, Jiang X (2018) Multi-walled carbon nanotubes modified by polyaniline for the removal of alizarin yellow R from aqueous solutions. Adsorpt Sci Technol 36(1–2):198–214

    Article  CAS  Google Scholar 

  132. Xiao W, Jiang X, Liu X, Zhou W, Garba ZN, Lawan I, Wang L, Yuan Z (2021) Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J Clean Prod 124773

    Google Scholar 

  133. Xu X, Mredha MTI, Cui J, Vlassak JJ, Jeon I (2018) Hydrogel bowls for cleaning oil spills on water. Water Res 145:640–649

    Article  Google Scholar 

  134. Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S (2021) Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater—a review. J Water Process Eng 42:102148

    Article  Google Scholar 

  135. Yang K, Wang J, Chen X, Zhao Q, Ghaffar A, Chen B (2018) Application of graphene-based materials in water purification: from the nanoscale to specific devices. Environ Sci Nano 5(6):1264–1297

    Article  CAS  Google Scholar 

  136. Yu L, Luo YM (2014) The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous AC. J Environ Chem Eng 2(1):220–229

    Article  CAS  Google Scholar 

  137. Zare K, Gupta VK, Moradi O, Makhlouf ASH, Sillanpää M, Nadagouda MN, Sadegh H, Shahryari-Ghoshekandi R, Pal A, Wang ZJ, Tyagi I (2015) A comparative study on the basis of adsorption capacity between CNTs and AC as adsorbents for removal of noxious synthetic dyes: a review. J Nanostruct Chem 5(2):227–236

    Article  CAS  Google Scholar 

  138. Zare K, Sadegh H, Shahryari-ghoshekandi R, Maazinejad B, Ali V, Tyagi I, Agarwal Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48(17):9995–10009

    Google Scholar 

  139. Zare K, Sadegh H, Shahryari-ghoshekandi R, Maazinejad B, Ali V, Tyagi I, Agarwal S, Gupta VK (2015) Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: kinetic, equilibrium studies and its comparison with other adsorbents. J Mol Liq 212:266–271

    Google Scholar 

  140. Zhu GZ, Deng XL, Hou M, Sun K, Zhang YP, Li P, Liang FM (2016) Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues. Fuel Process Technol 144:255–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anindita De or N. B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S., De, A., Guin, M., Singh, N.B. (2022). Carbon Materials for Dye Removal from Wastewater. In: Muthu, S.S., Khadir, A. (eds) Textile Wastewater Treatment. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2832-1_7

Download citation

Publish with us

Policies and ethics