Skip to main content

A Deep Learning Paradigm for Computer Aided Diagnosis of Emphysema from Lung HRCT Images

  • Conference paper
  • First Online:
Applied Computational Technologies (ICCET 2022)

Abstract

Emphysema is associated with lung tissue loss and is one of the primary reasons for COPD (Chronic Obstructive Pulmonary Disease). Thus, to detect the stage of COPD and proliferation of the emphysematous lesions, it is necessary to distinguish between emphysematous and healthy lung tissues. This study discusses a novel approach to determining the lungs’ emphysema through chest C.T. image analysis. For this, an intensity threshold of −910 HU is taken to detect the emphysematous tissues from the affected lungs highlighted on the C.T. images and further segregated into normal and emphysema affected lung C.T. images to bring automation in classification and emphysema detection using Deep Learning algorithms. C.T. images of 115 subjects (COPD and non-COPD smokers and non-smokers) were processed and used for classification in this study to screen out emphysema lung conditions. Because of such a small database building, a CNN from scratch yielded an accuracy of 54% in classification, which is why transfer learning was used to enhance the ability of emphysema detection. Furthermore, pre-trained network VGG16 used to classify the C.T. images outperformed the basic CNN with a whooping accuracy of 88% for determining emphysema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bharati, S., Podder, P., Mondal, R., Mahmood, A., Raihan-Al-Masud, M.: Comparative performance analysis of different classification algorithm for the purpose of prediction of lung cancer. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) ISDA 2018 2018. AISC, vol. 941, pp. 447–457. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16660-1_44

    Chapter  Google Scholar 

  2. Coudray, N., Ocampo, P.S., Sakellaropoulos, T., et al.: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018). https://doi.org/10.1038/s41591-018-0177-5

    Article  Google Scholar 

  3. Ritchie, A.I., Wedzicha, J.A.: Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin. Chest Med. 41(3), 421–438 (2020). https://doi.org/10.1016/j.ccm.2020.06.007

    Article  Google Scholar 

  4. Bharati, S., Podder, P., Mondal, M.R.H.: Hybrid deep learning for detecting lung diseases from X-ray images. Inf. Med. Unlocked 20, 100391 (2020). https://doi.org/10.1016/j.imu.2020.100391

    Article  Google Scholar 

  5. Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans: the LIDC/IDRI thoracic CT database of lung nodules. Med. Phys. 38(2), 915–931 (2011). https://doi.org/10.1118/1.3528204

    Article  Google Scholar 

  6. Bragman, F.J.S., McClelland, J.R., Jacob, J., Hurst, J.R., Hawkes, D.J.: Pulmonary lobe segmentation with probabilistic segmentation of the fissures and a groupwise fissure prior. IEEE Trans. Med. Imaging 36(8), 1650–1663 (2017). https://doi.org/10.1109/TMI.2017.2688377

    Article  Google Scholar 

  7. Kitaguchi, Y., Fujimoto, K., Hanaoka, M., Kawakami, S., Honda, T., Kubo, K.: Clinical characteristics of combined pulmonary fibrosis and emphysema. Respirology 15(2), 265–271 (2010). https://doi.org/10.1111/j.1440-1843.2009.01676.x

    Article  Google Scholar 

  8. Ginsburg, S.B., Lynch, D.A., Bowler, R.P., Schroeder, J.D.: Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images. Acad. Radiol. 10, 1241–1251 (2012). https://doi.org/10.1016/j.acra.2012.04.02

    Article  Google Scholar 

  9. Sørensen, L., Shaker, S.B., de Bruijne, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29(2), 559–569 (2010)

    Article  Google Scholar 

  10. https://lauge-soerensen.github.io/emphysema-database/

  11. Hayhurst, M.D., et al.: Diagnosis of pulmonary emphysema by computerised tomography. Lancet 2, 320–322 (1984)

    Article  Google Scholar 

  12. Shaker, S.B., et al.: Identification of patients with chronic obstructive pulmonary disease (COPD) by measurement of plasma biomarkers: plasma biomarkers in COPD. Clin. Respir. J. 2(1), 17–25 (2007). https://doi.org/10.1111/j.1752-699X.2007.00032.x

    Article  Google Scholar 

  13. Gould, G.A., et al.: CT measurements of lung density in life can quantitate distal airspace enlargement–an essential defining feature of human emphysema. Am. Rev. Respir. Dis. 137, 380–392 (1988)

    Article  Google Scholar 

  14. https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning99760835f148#:~:text=Strides,with%20a%20stride%20of%202

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv arXiv:1409.1556v6 [cs.CV] (2015). Published as a conference paper at ICLR 2015

  16. https://www.pyimagesearch.com/2021/03/15/mixing-normal-images-and-adversarial-images-when-training-cnns/

  17. Soffer, S., Ben-Cohen, A., Shimon, O., Amitai, M.M., Greenspan, H., Klang, E.: Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290, 590–606 (2019). https://doi.org/10.1148/radiol.2018180547

    Article  Google Scholar 

  18. https://towardsdatascience.com/getting-started-with-google-colab-f2fff97f594c

  19. https://machinelearningmastery.com/tutorial-first-neural-network-python-keras

  20. https://medium.com/@julsimon/imagenet-part-1-going-on-an-adventure-c0a62976dc72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Parbat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parui, S., Parbat, D., Chakraborty, M. (2022). A Deep Learning Paradigm for Computer Aided Diagnosis of Emphysema from Lung HRCT Images. In: Iyer, B., Crick, T., Peng, SL. (eds) Applied Computational Technologies. ICCET 2022. Smart Innovation, Systems and Technologies, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5_18

Download citation

Publish with us

Policies and ethics