Skip to main content

Abstract

Patients with cirrhosis are susceptible to a wide variety of infections. Sepsis is an established precipitant of acute on chronic liver failure (ACLF). The occurrence of sepsis in cirrhosis is associated with high morbidity and mortality and warrants early recognition and prompt treatment. Antibiotics are widely used in patients with cirrhosis both prophylactically and as a part of treatment to control sepsis. However, since a majority of the antibiotics used are metabolized through the liver, it is important to take note of the altered pharmacodynamics and pharmacokinetics in cirrhosis while prescribing antibiotics. Drugs and medications can cause hepatic injury and exacerbate pre-existing liver disease, leading to decompensations and ACLF. Besides, patients with cirrhosis often have underlying renal dysfunction. This can be further potentiated by the use of nephrotoxic antibiotics. Antibiotics can also cause cytopenias, neurotoxicity, and skin injury. The emergence of drug-resistant bacteria is also a challenge in the setting of cirrhosis. Judicious and rational use of antibiotics, early de-escalation, and implementation of antibiotic stewardship programmes are essential to tackle the problem of drug resistance. Careful selection of antibiotics, knowledge of pharmacological profiles of antibiotics used, awareness of antibiotic-associated toxicities, and strategies to tackle drug resistance are important while prescribing antibiotics in patients with cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moreau R, Jalan R, Gines P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144:1426–37, 1437.e1–9.

    Google Scholar 

  2. Fernández J, Acevedo J, Castro M, et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology. 2012;55:1551–61.

    Google Scholar 

  3. Gustot T, Durand F, Lebrec D, Vincent J-L, Moreau R. Severe sepsis in cirrhosis. Hepatology. 2009;50:2022–33.

    Google Scholar 

  4. Piano S, Tonon M, Vettore E, et al. Incidence, predictors and outcomes of acute-on-chronic liver failure in outpatients with cirrhosis. J Hepatol. 2017;67:1177–84.

    Article  PubMed  Google Scholar 

  5. Fernández J, Acevedo J, Wiest R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut. 2018;67:1870–80.

    Article  PubMed  CAS  Google Scholar 

  6. Arvaniti V, D’Amico G, Fede G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology. 2010;139:1246–56, 1256.e1–5.

    Google Scholar 

  7. Foreman MG, Mannino DM, Moss M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. Chest. 2003;124:1016–20.

    Article  PubMed  Google Scholar 

  8. Jalan R, Fernandez J, Wiest R, et al. Bacterial infections in cirrhosis: a position statement based on the EASL special conference 2013. J Hepatol. 2014;60:1310–24.

    Article  PubMed  Google Scholar 

  9. Appenrodt B, Grünhage F, Gentemann MG, Thyssen L, Sauerbruch T, Lammert F. Nucleotide-binding oligomerization domain containing 2 (NOD2) variants are genetic risk factors for death and spontaneous bacterial peritonitis in liver cirrhosis. Hepatology. 2010;51:1327–33.

    Google Scholar 

  10. Nischalke HD, Berger C, Aldenhoff K, et al. Toll-like receptor (TLR) 2 promoter and intron 2 polymorphisms are associated with increased risk for spontaneous bacterial peritonitis in liver cirrhosis. J Hepatol. 2011;55:1010–6.

    Article  CAS  PubMed  Google Scholar 

  11. Soriano G, Sánchez E, Nieto JC, et al. Cytokine production in patients with cirrhosis and D299g and/or T399i toll-like receptor 4 polymorphisms. J Hepatol. 2013;58:S247–8.

    Article  Google Scholar 

  12. Bauer TM, Steinbrückner B, Brinkmann FE, et al. Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol. 2001;96:2962–7.

    Article  CAS  PubMed  Google Scholar 

  13. Morencos FC, de las Heras Castaño G, Martín Ramos L, López Arias MJ, Ledesma F, Pons Romero F. Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Dig Dis Sci. 1995;40:1252–6.

    Article  CAS  PubMed  Google Scholar 

  14. Pande C, Kumar A, Sarin SK. Small-intestinal bacterial overgrowth in cirrhosis is related to the severity of liver disease. Aliment Pharmacol Ther. 2009;29:1273–81.

    Article  CAS  PubMed  Google Scholar 

  15. Chang CS, Chen GH, Lien HC, Yeh HZ. Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology. 1998;28:1187–90.

    Google Scholar 

  16. Saitoh O, Sugi K, Lojima K, et al. Increased prevalence of intestinal inflammation in patients with liver cirrhosis. World J Gastroenterol. 1999;5:391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lorenzo-Zúñiga V, Bartolí R, Planas R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology. 2003;37:551–7.

    Google Scholar 

  18. Teltschik Z, Wiest R, Beisner J, et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology. 2012;55:1154–63.

    Google Scholar 

  19. Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Investig. 2012;42:439–46.

    Article  CAS  Google Scholar 

  20. Assimakopoulos SF, Charonis AS. Uncovering the molecular events associated with increased intestinal permeability in liver cirrhosis: the pivotal role of enterocyte tight junctions and future perspectives. J Hepatol. 2013;59:1144–6.

    Article  CAS  PubMed  Google Scholar 

  21. Tritto G, Bechlis Z, Stadlbauer V, et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J Hepatol. 2011;55:574–81.

    Article  CAS  PubMed  Google Scholar 

  22. Wasmuth HE, Kunz D, Yagmur E, et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol. 2005;42:195–201.

    Article  CAS  PubMed  Google Scholar 

  23. Malik R, Mookerjee RP, Jalan R. Infection and inflammation in liver failure: two sides of the same coin. J Hepatol. 2009;51:426–9.

    Article  PubMed  Google Scholar 

  24. Fasolato S, Angeli P, Dallagnese L, et al. Renal failure and bacterial infections in patients with cirrhosis: epidemiology and clinical features. Hepatology. 2007;45:223–9.

    Article  PubMed  Google Scholar 

  25. Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol. 2012;56:S1–12.

    Google Scholar 

  26. O’Leary JG, Reddy KR, Wong F, et al. Long-term use of antibiotics and proton pump inhibitors predict development of infections in patients with cirrhosis. Clin Gastroenterol Hepatol. 2015;13:753–9.e1-2.

    Article  PubMed  CAS  Google Scholar 

  27. Bajaj JS, O’Leary JG, Reddy KR, et al. Second infections independently increase mortality in hospitalized patients with cirrhosis: the north American consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology. 2012;56:2328–35.

    Article  CAS  PubMed  Google Scholar 

  28. Merli M, Lucidi C, Giannelli V, et al. Cirrhotic patients are at risk for health care-associated bacterial infections. Clin Gastroenterol Hepatol. 2010;8:979–85.

    Article  PubMed  Google Scholar 

  29. Jalan R, Gines P, Olson JC, et al. Acute-on chronic liver failure. J Hepatol. 2012;57:1336–48.

    Google Scholar 

  30. Rodighiero V. Effects of liver disease on pharmacokinetics. An update. Clin Pharmacokinet. 1999;37:399–431.

    Article  CAS  PubMed  Google Scholar 

  31. Delcò F, Tchambaz L, Schlienger R, Drewe J, Krähenbühl S. Dose adjustment in patients with liver disease. Drug Saf. 2005;28:529–45.

    Article  PubMed  Google Scholar 

  32. Lewis JH. The rational use of potentially hepatotoxic medications in patients with underlying liver disease. Expert Opin Drug Saf. 2002;1:159–72.

    Article  CAS  PubMed  Google Scholar 

  33. Zimmerman HJ. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Lippincott Williams & Wilkins; 1999.

    Google Scholar 

  34. Amarapurkar DN. Prescribing medications in patients with decompensated liver cirrhosis. Int J Hepatol. 2011;2011:519526.

    PubMed  PubMed Central  Google Scholar 

  35. Bajaj JS, Liu EJ, Kheradman R, et al. Fungal dysbiosis in cirrhosis Gut. 2018;67:1146–54.

    CAS  PubMed  Google Scholar 

  36. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.

    Article  PubMed  CAS  Google Scholar 

  37. Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the Management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:e1–50.

    Article  PubMed  Google Scholar 

  38. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.

    Google Scholar 

  39. Kuti EL, Kuti JL. Pharmacokinetics, antifungal activity and clinical efficacy of anidulafungin in the treatment of fungal infections. Expert Opin Drug Metab Toxicol. 2010;6:1287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vekeman F, Weiss L, Aram J, et al. Retrospective cohort study comparing the risk of severe hepatotoxicity in hospitalized patients treated with echinocandins for invasive candidiasis in the presence of confounding by indication. BMC Infect Dis. 2018;18:438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Glöckner A. Treatment and prophylaxis of invasive candidiasis with anidulafungin, caspofungin and micafungin: review of the literature. Eur J Med Res. 2011;16:167–79.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bajaj JS, Heuman DM, Sanyal AJ, et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One. 2013;8:e60042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bass NM, Mullen KD, Sanyal A, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362:1071–81.

    Article  CAS  PubMed  Google Scholar 

  44. Hanouneh MA, Hanouneh IA, Hashash JG, et al. The role of rifaximin in the primary prophylaxis of spontaneous bacterial peritonitis in patients with liver cirrhosis. J Clin Gastroenterol. 2012;46:709–15.

    Article  CAS  PubMed  Google Scholar 

  45. Vlachogiannakos J, Viazis N, Vasianopoulou P, Vafiadis I, Karamanolis DG, Ladas SD. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J Gastroenterol Hepatol. 2013;28:450–5.

    Article  CAS  PubMed  Google Scholar 

  46. Fernández J, Tandon P, Mensa J, Garcia-Tsao G. Antibiotic prophylaxis in cirrhosis: good and bad. Hepatology. 2016;63:2019–31.

    Google Scholar 

  47. Udy AA, Roberts JA, Lipman J. Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med. 2013;39:2070–82.

    Article  CAS  PubMed  Google Scholar 

  48. Ali N, Gupta N, Saravu K. Malnutrition as an important risk factor for drug-induced liver injury in patients on anti-tubercular therapy: an experience from a tertiary care center in South India. Drug Discov Ther. 2020;14:135–8.

    Article  CAS  PubMed  Google Scholar 

  49. Whitcomb DC, Block GD. Association of acetaminophen hepatotoxicity with fasting and ethanol use. JAMA. 1994;272:1845–50.

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Gao P, Niu J. Metabolic comorbidities and risk of development and severity of drug-induced liver injury. Biomed Res Int. 2019;2019:8764093.

    PubMed  PubMed Central  Google Scholar 

  51. Cross FS, Long MW, Banner AS, Snider DE. Rifampin-isoniazid therapy of alcoholic and nonalcoholic tuberculous patients in a U.S. Public Health Service cooperative therapy trial. Am Rev Respir Dis. 1980;122:349–53.

    CAS  PubMed  Google Scholar 

  52. Russo MW, Watkins PB. Are patients with elevated liver tests at increased risk of drug-induced liver injury? Gastroenterology. 2004;126:1477–80.

    Article  PubMed  Google Scholar 

  53. Wong WM, Wu PC, Yuen MF, et al. Antituberculosis drug-related liver dysfunction in chronic hepatitis B infection. Hepatology. 2000;31:201–6.

    Google Scholar 

  54. Patel PA, Voigt MD. Prevalence and interaction of hepatitis B and latent tuberculosis in Vietnamese immigrants to the United States. Am J Gastroenterol. 2002;97:1198–203.

    Article  PubMed  Google Scholar 

  55. Reuben A, Koch DG, Lee WM. Acute liver failure study group. Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology. 2010;52:2065–76.

    Article  PubMed  Google Scholar 

  56. Devarbhavi H, Andrade RJ. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs. Semin Liver Dis. 2014;34:145–61.

    Article  CAS  PubMed  Google Scholar 

  57. Orlando R, Mussap M, Plebani M, et al. Diagnostic value of plasma cystatin C as a glomerular filtration marker in decompensated liver cirrhosis. Clin Chem. 2002;48:850–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Habib S, Patel N, Yarlagadda S, et al. Safety and efficacy of antibiotics among acutely decompensated cirrhosis patients. J Gastroenterol Hepatol. 2018;33:1882–8.

    Article  CAS  PubMed  Google Scholar 

  60. Dixit RK, Satapathy SK, Kumar R, et al. Pharmacokinetics of ciprofloxacin in patients with liver cirrhosis. Indian J Gastroenterol. 2002;21:62–3.

    CAS  PubMed  Google Scholar 

  61. Montay G, Gaillot J. Pharmacokinetics of fluoroquinolones in hepatic failure. J Antimicrob Chemother. 1990;26:61–7.

    Google Scholar 

  62. Vuppalanchi R, Juluri R, Ghabril M, et al. Drug-induced QT prolongation in cirrhotic patients with transjugular intrahepatic portosystemic shunt. J Clin Gastroenterol. 2011;45:638–42.

    Article  PubMed  Google Scholar 

  63. Mattappalil A, Mergenhagen KA. Neurotoxicity with antimicrobials in the elderly: a review. Clin Ther. 2014;36:1489–511.e4.

    Article  CAS  PubMed  Google Scholar 

  64. Bhattacharyya S, Darby RR, Raibagkar P, Castro LNG, Berkowitz AL. Antibiotic-associated encephalopathy. Neurology. 2016;86:963–71.

    Article  CAS  PubMed  Google Scholar 

  65. Veirup N, Kyriakopoulos C. Neomycin [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021 [cited 2021 Oct 1]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK560603/

  66. Loft S, Sonne J, Døssing M, Andreasen PB. Metronidazole pharmacokinetics in patients with hepatic encephalopathy. Scand J Gastroenterol. 1987;22:117–23.

    Article  CAS  PubMed  Google Scholar 

  67. Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65:1906–15.

    Article  CAS  PubMed  Google Scholar 

  68. Singh N, Yu VL, Mieles LA, Wagener MM. Beta-lactam antibiotic-induced leukopenia in severe hepatic dysfunction: risk factors and implications for dosing in patients with liver disease. Am J Med. 1993;94:251–6.

    Article  CAS  PubMed  Google Scholar 

  69. He Z-F, Wu X-A, Wang Y-P. Severe bone marrow suppression and hepatic dysfunction caused by piperacillin/tazobactam. Scand J Infect Dis. 2013;45:885–7.

    Article  CAS  PubMed  Google Scholar 

  70. Patil A, Khillan V, Thakur M, Kale P, Bihari C. Antimicrobial-induced Cytopenia and bone marrow Hypocellularity in patients with cirrhosis. Bone Marrow Res. 2018;2018:e4029648.

    Article  CAS  Google Scholar 

  71. Devarbhavi H, Raj S. Drug-induced liver injury with skin reactions: drugs and host risk factors, clinical phenotypes and prognosis. Liver Int. 2019;39:802–11.

    Article  PubMed  Google Scholar 

  72. Lin Y-T, Wu P-H, Lin C-Y, et al. Cirrhosis as a risk factor for tuberculosis infection–a Nationwide longitudinal study in Taiwan. Am J Epidemiol. 2014;180:103–10.

    Article  PubMed  Google Scholar 

  73. Rifampin [Internet]. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012 [cited 2021 Oct 1]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK548314/

  74. Gupta NK, Lewis JH. Review article: the use of potentially hepatotoxic drugs in patients with liver disease. Aliment Pharmacol Ther. 2008;28:1021–41.

    Article  CAS  PubMed  Google Scholar 

  75. Saito A, Nagayama N, Yagi O, et al. Tuberculosis complicated with liver cirrhosis. Kekkaku. 2006;81:457–65.

    Google Scholar 

  76. Hawkins MT, Lewis JH. Latest advances in predicting DILI in human subjects: focus on biomarkers. Expert Opin Drug Metab Toxicol. 2012;8:1521–30.

    Article  CAS  PubMed  Google Scholar 

  77. Isoniazid [Internet]. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012 [cited 2021 Oct 1]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK548754/

  78. Kaneko Y, Nagayama N, Kawabe Y, et al. Drug-induced hepatotoxicity caused by anti-tuberculosis drugs in tuberculosis patients complicated with chronic hepatitis. Kekkaku. 2008;83:13–9.

    PubMed  Google Scholar 

  79. Jahng AW, Tran T, Bui L, Joyner JL. Safety of treatment of latent tuberculosis infection in compensated cirrhotic patients during transplant candidacy period. Transplantation. 2007;83:1557–62.

    Article  CAS  PubMed  Google Scholar 

  80. Holty J-EC, Gould MK, Meinke L, Keeffe EB, Ruoss SJ. Tuberculosis in liver transplant recipients: a systematic review and meta-analysis of individual patient data. Liver Transplant. 2009;15:894–906.

    Article  Google Scholar 

  81. Jafri S-M, Singal AG, Kaul D, Fontana RJ. Detection and management of latent tuberculosis in liver transplant patients. Liver Transplant. 2011;17:306–14.

    Article  Google Scholar 

  82. Lacroix C, Tranvouez JL, Phan Hoang T, Duwoos H, Lafont O. Pharmacokinetics of pyrazinamide and its metabolites in patients with hepatic cirrhotic insufficiency. Arzneimittelforschung. 1990;40:76–9.

    CAS  PubMed  Google Scholar 

  83. Kumar N, Kedarisetty CK, Kumar S, Khillan V, Sarin SK. Antitubercular therapy in patients with cirrhosis: challenges and options. World J Gastroenterol. 2014;20:5760–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saigal S, Agarwal SR, Nandeesh HP, Sarin SK. Safety of an ofloxacin-based antitubercular regimen for the treatment of tuberculosis in patients with underlying chronic liver disease: a preliminary report. J Gastroenterol Hepatol. 2001;16:1028–32.

    Article  CAS  PubMed  Google Scholar 

  85. Fernández J, Prado V, Trebicka J, et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J Hepatol. 2019;70:398–411.

    Article  PubMed  Google Scholar 

  86. Merli M, Lucidi C, Di Gregorio V, et al. The spread of multi drug resistant infections is leading to an increase in the empirical antibiotic treatment failure in cirrhosis: a prospective survey. PLoS One. 2015;10:e0127448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ariza X, Castellote J, Lora-Tamayo J, et al. Risk factors for resistance to ceftriaxone and its impact on mortality in community, healthcare and nosocomial spontaneous bacterial peritonitis. J Hepatol. 2012;56:825–32.

    Article  CAS  PubMed  Google Scholar 

  88. Tandon P, Delisle A, Topal JE, Garcia-Tsao G. High prevalence of antibiotic-resistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol. 2012;10:1291–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chan C, Levitsky J. Infection and alcoholic liver disease. Clin Liver Dis. 2016;20:595–606.

    Article  PubMed  Google Scholar 

  90. Bunchorntavakul C, Chavalitdhamrong D. Bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. World J Hepatol. 2012;4:158–68.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fernandez J, Arroyo V. Bacterial infections in cirrhosis: a growing problem with significant implications. Clin Liver Dis. 2013;2:102–5.

    Article  Google Scholar 

  92. Arabi YM, Dara SI, Memish Z, et al. Antimicrobial therapeutic determinants of outcomes from septic shock among patients with cirrhosis. Hepatology. 2012;56:2305–15.

    Google Scholar 

  93. European Association for the Study of the Liver. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69:406–60.

    Google Scholar 

  94. Viale P, Giannella M, Bartoletti M, Tedeschi S, Lewis R. Considerations about antimicrobial stewardship in settings with epidemic extended-Spectrum β-lactamase-producing or Carbapenem-resistant Enterobacteriaceae. Infect Dis Ther. 2015;4:65–83.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fernández J, Bert F, Nicolas-Chanoine M-H. The challenges of multi-drug-resistance in hepatology. J Hepatol. 2016;65:1043–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chouhan, S., Anirvan, P., Singh, S.P. (2022). Antibiotics in Liver Cirrhosis. In: Qi, X., Yang, Y. (eds) Pharmacotherapy for Liver Cirrhosis and Its Complications. Springer, Singapore. https://doi.org/10.1007/978-981-19-2615-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2615-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2614-3

  • Online ISBN: 978-981-19-2615-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics