Skip to main content

Comparative Study of CuO/ZTA and ZTA Composites in Terms of Functional Properties

  • Conference paper
  • First Online:
Tailored Functional Materials

Abstract

In this analysis, functional properties of zirconia toughened alumina (ZTA) are improved by doping 1.5 wt. % copper oxide (CuO). The powders of composites are prepared through co-precipitation process followed by hot isostatic pressing for densification. After densification, developed composites are mirror polished to evaluate the functional properties. The results of investigation shows a decrement in hardness ( ̴ 5%) and bulk density ( ̴ 7%), respectively, whereas, an improvement of 1% is observed for fracture toughness. A significant improvement of ̴ 20% in coefficient of friction is also observed. The decrement in mechanical properties is attributed to the existence of CuO at the grain boundary that acts as an ionic copper, creates impurities phases. But, the presence of ionic copper at the grain boundary encourages the crack bridging phenomenon responsible for the improvement in fracture toughens. A remarkable reduction in the functional properties is observed due to formation of complex compound, i.e. CuAl2O4 during densification. The formed complex compound has low shear strength and easily deformable, resulting in the formation of thin film between two sliding surfaces. The formation of patchy layer at the interface is main basis for the improvement in COF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Stevens R (1989) Zirconia-toughened alumina (ZTA) ceramics. J Mater Sci 24:3421–3440

    Article  CAS  Google Scholar 

  2. Basha MM, Basha SM, Singh BK, Mandal N, Sankar MR (2020) A review on synthesis of zirconia toughened alumina (ZTA) for cutting tool applications. Mater Today: Proc 26:534–541

    CAS  Google Scholar 

  3. Banik SR, Iqbal IM, Nath R, Bora LJ, Singh BK, Mandal N, Sankar MR (2019) State of the art on zirconia toughened alumina cutting tools. Mater Today: Proc 18:2632–3264

    CAS  Google Scholar 

  4. Pratap A, Kumar P, Singh GP, Mandal NA, Singh BK (2020) Effect of indentation load on mechanical properties and evaluation of tribological properties for zirconia toughened alumina. Mater Today: Proc 26:2442–2446

    CAS  Google Scholar 

  5. Singh BK, Roy H, Mondal B, Roy SS, Mandal N (2019) Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert. Measurement 142:181–194

    Article  Google Scholar 

  6. Singh BK, Roy H, Mondal B, Roy SS, Mandal N (2018) Development and machinability evaluation of MgO doped Y-ZTA ceramic inserts for high speed machining of steel. Mach Sci Technol 22:899–913

    Article  CAS  Google Scholar 

  7. Kumar P, Pratap A, Mandal N, Singh BK (2021) Effect of sliding velocity and Load on the COF of self-lubricating Ceramics CuO/MgO/ZTA. Mater Today: Proc 44:1806–1810

    CAS  Google Scholar 

  8. Mandal N, Doloi B, Mondal B, Singh BK (2015) Multi criteria optimization and predictive modeling of turning forces in high speed machining of Y-ZTA insert using desirability function approach. J Eng Manuf Part B (SAGE Publication) 231(8):1396–1408

    Article  Google Scholar 

  9. Liu H, Xue Q (1996) The tribological properties of TZP-graphite self-lubricating ceramics. Wear 198:143–149

    Article  CAS  Google Scholar 

  10. Mazumder S, Kumar A, Singh BK, Roy H, Mandal N (2019) Tribological investigation of MgO/Al2O3 ceramic composite with the inclusion of nano CuO in dry abrasive wear test. Mater Res Express 6:085086

    Article  CAS  Google Scholar 

  11. Ghosh K, Mazumder S, Kumar Singh B, Hirani H, Roy P, Mandal N (2020) Tribological property investigation of self-lubricating molybdenum-based zirconia ceramic composite operational at elevated temperature. J Tribol 142:021704

    Article  CAS  Google Scholar 

  12. Guangyong W, Chonghai X, Yonglian Z, Mingdong Y (2011) State of the art of graded self-lubricating ceramic cutting tool materials. Appl Mech Mater 66:1598–1604

    Google Scholar 

  13. Sliney HE (1982) Solid lubrication materials for high temperatures—a review. Tribol Int 15:303–314

    Article  CAS  Google Scholar 

  14. Kerkwijk B, Garcia M, Van Zyl WE, Winnubst L, Mulder EJ, Schipper DJ, Verweij H (2004) Friction behaviour of solid oxide lubricants as second phase in a-Al2O3 and stabilised ZrO2 composites. Wear 256:182–189

    Article  CAS  Google Scholar 

  15. Pasaribu HR, Sloetjes JW, Schipper DJ (2003) Friction reduction by adding copper oxide into alumina and zirconia ceramics. Wear 255:699–707

    Article  CAS  Google Scholar 

  16. Pasaribu HR, Reuver KM, Schipper DJ, Ran S, Wiratha KW, Winnubst AJA, Blank DHA (2005) Environmental effects on friction and wear of dry sliding zirconia and alumina ceramics doped with copper oxide. Int J Refract Hard Met 23(4–6):386–390

    Article  CAS  Google Scholar 

  17. Song J, Valefi M, De Rooij M, Schipper DJ, Winnubst L (2012) The effect of an alumina counterface on friction reduction of CuO/3Y-TZP composite at room temperature. Wear 274:75–83

    Article  Google Scholar 

  18. Dey AK, Biswas K (2009) Dry sliding wear of zirconia-toughened alumina with different metal oxide additives. Ceram Int 35(3):997–1002

    Article  CAS  Google Scholar 

  19. Dey AK, Chatterjee S, Biswas K (2017) Effect of oxide additives on phase evolution and tribological behavior of zirconia-toughened alumina composite. J Mater Eng Perform 26(12):6107–6116

    Article  CAS  Google Scholar 

  20. He YJ, Winnubst AJ, Burggraaf AJ, Verweij H, Van der Varst PGT, de With G (1997) Sliding wear of ZrO2-Al2O3 composite ceramics. J Euro Ceram Soc 17(11):1371–1380

    Article  CAS  Google Scholar 

  21. Singh BK, Ghosh K, Roy SS, Mondal B, Mandal N (2018) Correlation between Microstructure and Mechanical Properties of YSZ/Al2O3 Ceramics and Its Effect on High Speed Machining of Steel. Trans Indian Ceram Soc 77:219–225

    Article  CAS  Google Scholar 

  22. Singh BK, Mondal B, Mandal N (2016) Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr-ZTA)cutting insert in high speed machining of steel Machining. Ceram Int 42:3338–3350

    Article  CAS  Google Scholar 

  23. Singh BK, Samanta S, Roy SS, Sahoo RR, Roy H, Mandal N (2020) Evaluation of mechanical and frictional properties of CuO added MgO/ZTA ceramics. Mater Res Express 6:125208

    Article  Google Scholar 

  24. Ramesh S, Aw KL, Ting CH, Tan CY, Sopyan I, Teng WD (2008) Effect of copper oxide on the sintering of alumina ceramics. Adv Mater Res 47–50:801–804

    Google Scholar 

  25. Ran S, Winnubst L, Blank DH, Pasaribu HR,  Sloetjes JW, Schipper DJ (2007) Effect of microstructure on the tribological and mechanical properties of CuO/doped 3Y/TZP ceramics. J Am Ceram Soc 90(9):2747–2752

    Google Scholar 

  26. Oh ST, Lee SI (2010) Fabrication of alumina-based metal nanocomposites by pressureless sintering and their mechanical properties. J Nanosci Nanotechnol 10:366–369

    Article  CAS  Google Scholar 

  27. Budiansky B, Amazigo JC, Evans AG (1988) Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics. J Mech Phys Solids 36:167–187

    Article  Google Scholar 

  28. Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206

    Article  CAS  Google Scholar 

  29. Singh BK, Goswami S, Ghosh K, Roy H, Mandal N (2021) Performance evaluation of self lubricating CuO added ZTA ceramic inserts in dry turning application. Int J Refract Hard Met 98:105551

    Article  CAS  Google Scholar 

  30. Pratap A, Singh BK, Sardana N (2022) Fracture in self-lubricating inserts: A case study, Mater Today: Proc https://doi.org/10.1016/j.matpr.2022.06.005   

Download references

Acknowledgements

The authors thanks to Dr. Rishi ashthana (Director GITM Lucknow) for his kind permission to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipin Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, B.K., Yaduvanshi, A.A., Mishra, A.K. (2022). Comparative Study of CuO/ZTA and ZTA Composites in Terms of Functional Properties. In: Mukherjee, K., Layek, R.K., De, D. (eds) Tailored Functional Materials. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-19-2572-6_28

Download citation

Publish with us

Policies and ethics