Skip to main content

Multi-Objective Calibration of a Single-Event, Physically-Based Hydrological Model (KINEROS2) Using AMALGAM Approach

  • Chapter
  • First Online:
Computational Intelligence for Water and Environmental Sciences

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1043))

Abstract

Prediction of destructive flood events particularly in degraded watersheds necessitates the importance of model calibration procedure. Multi-objective calibration of hydrologic model parameters with conflicting objectives attempts to adjust the parameter values in terms of different objective functions. Thus, this research carried out a procedure of multi-objective optimization for a distributed and single event-based rainfall–runoff model (i.e. Kineros2) through the AMALGAM algorithm in MATLAB environment. Four rainfall events with different durations and intensities in Tamar watershed, located in the northeast of Iran, were considered for rainfall-runoff simulation. Three objective functions including Nash- Sutcliffe Efficiency (NSE), Error in the Stage of Peak flood (ESP) and Relative Time Shift (RTS) were simultaneously employed during optimization process. The model optimization was evaluated through 5000 epochs and the best values of NSE (0.91), ESP (0) and RTS (0) were obtained for the simulation based on the third storm event (05/10/2005). The non-dominated solutions, extracted from the AMALGAM approach were plotted in a three-dimensional space to form the Pareto front. According to the inspection of interactive regions on the Pareto fronts, it was discovered that the behavior of RTS and ESP functions was in the same direction. Therefore, it should be expected that, the similar results will be achieved even by employing merely NSE and RTS as the fitness functions, especially in the simulations involved with flood warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi, M., Arabi, M., Ascough, J. C., II., Fontane, D. G., & Engel, B. A. (2014). Toward improved calibration of watershed models: Multisite multi-objective measures of information. Environmental Modelling and Software, 59, 135–145.

    Article  Google Scholar 

  • Al-Qurashi, A., McIntyre, N., Wheater, H., & Unkrich, C. (2008). Application of the KINEROS2 rainfall_runoff model to an arid catchment in Oman. Journal of Hydrology, 355(1), 91–105.

    Article  Google Scholar 

  • Azizian, A., & Shokoohi, A. (2014). DEM resolution and stream delineation threshold effects on the results of geomorphologic-based rainfall runoff models. Turkish Journal of Engineering and Environmental Sciences, 38(1), 64–78.

    Article  Google Scholar 

  • Beldring, S. (2002). Multi-criteria validation of a precipitation–runoff model. Journal of Hydrology, 257(1–4), 189–211.

    Article  Google Scholar 

  • Boyle, D. P., Gupta, H. V., & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36(12), 3663–3674.

    Article  Google Scholar 

  • Cheng, C. T., Ou, C. P., & Chau, K. W. (2002). Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. Journal of Hydrology, 268(1–4), 72–86.

    Article  Google Scholar 

  • Confesor, R. B., Jr., & Whittaker, G. W. (2007). Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and pareto optimization. JAWRA Journal of the American Water Resources Association, 43(4), 981–989.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Dotto, C. B., Kleidorfer, M., Deletic, A., Rauch, W., McCarthy, D. T., & Fletcher, T. D. (2011). Performance and sensitivity analysis of storm water models using a Bayesian approach and long-term high resolution data. Environmental Modelling & Software, 26(10), 1225–1239.

    Article  Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. Icga 93(July), 416–423

    Google Scholar 

  • Gal, L., Grippa, M., Hiernaux, P., Peugeot, C., Mougin, E., & Kergoat, L. (2016). Changes in lakes water volume and runoff over ungauged Sahelian watersheds. Journal of Hydrology, 540, 1176–1188.

    Article  Google Scholar 

  • Garmei, R., Faridhosseini, A. R., Hasheminia, S. M., & Hojjati, A. (2015). Comparing PSO algorithm automatic calibration and nelder and mead algorithm on the HEC-HMS hydrologic model (Case Study: Kardeh Watershed). Journal of Water and Soil Conservation, 22(5), 247–260. (In Persian).

    Google Scholar 

  • Guber, A. K., Pachepsky, Y. A., Yakirevich, A. M., Shelton, D. R., Sadeghi, A. M., Goodrich, D. C., & Unkrich, C. L. (2011). Uncertainty in modelling of faecal coliform overland transport associated with manure application in Maryland. Hydrological Processes, 25(15), 2393–2404.

    Article  Google Scholar 

  • Guber, A. K., Yakirevich, A. M., Sadeghi, A. M., Pachepsky, Y. A., & Shelton, D. R. (2009). Uncertainty evaluation of coliform bacteria removal from vegetated filter strip under overland flow condition. Journal of Environmental Quality, 38(4), 1636–1644.

    Article  Google Scholar 

  • Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1998). Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information. Water Resources Research, 34(4), 751–763.

    Article  Google Scholar 

  • Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135–143.

    Article  Google Scholar 

  • Her, Y., & Seong, C. (2018). Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration. Journal of Hydroinformatics, 20(4), 864–885.

    Article  Google Scholar 

  • Jie, M. X., Chen, H., Xu, C. Y., Zeng, Q., & Tao, X. E. (2015). A comparative study of different objective functions to improve the flood forecasting accuracy. Hydrology Research, 47(4), 718–735.

    Article  Google Scholar 

  • Kasmaei, L.P., Van Der Sant, R., Lane, P.J., & Sheriadan, G. (2015). Modelling overland flow on burned hillslopes using the KINEROS2 model. In 21st International congress on modelling and simulation. Gold Coast, Australia, 29 November to 4 December 2015.

    Google Scholar 

  • Kennedy, J. R., Goodrich, D. C., & Unkrich, C. L. (2012). Using the KINEROS2 modeling framework to evaluate the increase in storm runoff from residential development in a semiarid environment. Journal of Hydrologic Engineering, 18(6), 698–706.

    Article  Google Scholar 

  • Kim, J. H. (2014). Meta-heuristic algorithms as tools for hydrological science. Geoscience Letters, 1(1), 1–7.

    Google Scholar 

  • Kollat, J. B., Reed, P. M., & Wagener, T. (2012). When are multiobjective calibration trade‐offs in hydrologic models meaningful? Water Resources Research, 48(3).

    Google Scholar 

  • Koster, G. (2013). Mapping runoff and erosion to reduce urban flooding and sediment flow towards sea, a case study on the Playa catchment, Bonaire. M.Sc. thesis. Water Resources Management Group, WAGENINGEN University.

    Google Scholar 

  • Kuok, K. K., Harun, S., & Shamsuddin, S. M. (2010). Particle swarm optimization feedforward neural network for modeling runoff. International Journal of Environmental Science and Technology, 7(1), 67–78.

    Article  Google Scholar 

  • Madsen, H. (2000). Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. Journal of Hydrology, 235(3–4), 276–288.

    Article  Google Scholar 

  • McCuen, R. H. (2004). Hydrologic analysis and design. Journal of the American Water Resources Association, 40(3), 838.

    Google Scholar 

  • Memarian, H., Balasundram, S. K., Talib, J. B., Teh Boon Sung, C., Mohd Sood, A., & Abbaspour, K. C. (2013). KINEROS2 application for land use/cover change impact analysis at the Hulu Langat Basin. Malaysia. Water and Environment Journal, 27(4), 549–560.

    Article  Google Scholar 

  • Memarian, H., Balasundram, S. K., Talib, J., Teh, C. B. S., Alias, M. S., Abbaspour, K. C., & Haghizadeh, A. (2012). Hydrologic analysis of a tropical watershed using KINEROS2. EnvironmentAsia, 5(1), 84–93.

    Google Scholar 

  • Memarian, H., Bilondi, M. P., & Komeh, Z. (2019). Parameter optimization of KINEROS2 using particle swarm optimization algorithm within R environment for rainfall–runoff simulation. In Spatial Modeling in GIS and R for Earth and Environmental Sciences (pp. 117–146). Elsevier.

    Google Scholar 

  • Meyer, P.D., Rockhold, M.L., & Gee, G.W. (1997). Uncertainty analyses of infiltration and subsurface flow and transport for SDMP sites (No. NUREG/CR—6565; PNNL—11705). Nuclear Regulatory Commission, Div. of Regulatory Applications; Pacific Northwest National Lab.

    Google Scholar 

  • Mirzaei, M., Huang, Y. F., El-Shafie, A., Chimeh, T., Lee, J., Vaizadeh, N., & Adamowski, J. (2015). Uncertainty analysis for extreme flood events in a semi-arid region. Natural Hazards, 78(3), 1947–1960.

    Article  Google Scholar 

  • Molaeifar, A. (2013). KINEROS2 evaluation for hydrograph simulation of Ziarat watershed. MSc thesis. Gorgan University of Agriculture and Natural Resources (p. 95). (in Persian).

    Google Scholar 

  • Mostafaie, A., Forootan, E., Safari, A., & Schumacher, M. (2018). Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data. Computational Geosciences, 22(3), 789–814.

    Article  MathSciNet  MATH  Google Scholar 

  • Moussa, R., & Chahinian, N. (2009). Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events. Hydrology and Earth System Sciences, 13(4), 519–535.

    Article  Google Scholar 

  • Muleta, M. K., & Nicklow, J. W. (2005). Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology, 306(1–4), 127–145.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

    Google Scholar 

  • Norman, L. M., Sankey, J. B., Dean, D., Caster, J., DeLong, S., DeLong, W., & Pelletier, J. D. (2017). Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach. Geomorphology, 283, 1–16.

    Article  Google Scholar 

  • Nourali, M., Ghahraman, B., Pourreza-Bilondi, M., & Davary, K. (2016). Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model. Journal of Hydrology, 540, 549–564.

    Article  Google Scholar 

  • Ouyang, H. T. (2016). Multi-objective optimization of typhoon inundation forecast models with cross-site structures for a water-level gauging network by integrating ARMAX with a genetic algorithm. Natural Hazards and Earth System Sciences, 16(8), 1897–1909.

    Article  Google Scholar 

  • Sadeghi-Tabas, S., Samadi, S. Z., Akbarpour, A., & Pourreza-Bilondi, M. (2017). Sustainable groundwater modeling using single-and multi-objective optimization algorithms. Journal of Hydroinformatics, 19(1), 97–114.

    Article  Google Scholar 

  • Sahraei, S., Asadzadeh, M., & Unduche, F. (2020). Signature-based multi-modelling and multi-objective calibration of hydrologic models: Application in flood forecasting for Canadian Prairies. Journal of Hydrology, 588, 125095.

    Article  Google Scholar 

  • Seibert, J. (2000). Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences Discussions, 4(2), 215–224.

    Article  Google Scholar 

  • Semmens, D.J., Goodrich, D.C., Unkrich, C.L., Smith, R.E., Wool-hiser, D.A. & Miller, S.N. (2008) KINEROS2 and the AGWA modeling framework. In H. Wheater, S. Sorooshian, & K.D. Sharma (Eds.) Hydrological modelling in arid and semi-arid areas (p. 206). Cambridge University Press.

    Google Scholar 

  • Shafii, M., & Smedt, F. D. (2009). Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm. Hydrology and Earth System Sciences, 13(11), 2137–2149.

    Article  Google Scholar 

  • Smith, R. E., & Parlange, J. Y. (1978). A parameter-efficient hydrologic infiltration model. Water Resources Research, 14(3), 533–538.

    Article  Google Scholar 

  • Smith, R. E., Goodrich, D. C., & Unkrich, C. L. (1999). Simulation of selected events on the catsop catchment by KINEROS2, a report for the GCTE conference on catchment scale erosion models. CATENA, 37, 457–475.

    Article  Google Scholar 

  • Sorooshian, S., & Gupta, V.K. (1995). Model calibration. In: V.P. Singh (Ed.) Computer models of watershed hydrology. Chapter 2 (pp. 23−68). Water Resources Publications Highlands Ranch.

    Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Tajbakhsh, S. M., Memarian, H., Sobhani, M., & Aghakhani Afshar, A. H. (2018). Kinematic runoff and erosion model efficiency assessment for hydrological simulation of semi-arid watersheds. Global Journal of Environmental Science and Management, 4(2), 127–140.

    Google Scholar 

  • Tang, Y., Reed, P., & Wagener, T. (2006). How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrology and Earth System Sciences, 10(2), 289–307.

    Article  Google Scholar 

  • Vatseva, R., Nedkov, S., Nikolova, M., & Kotsev, T. (2008). Modeling land cover changes for flood hazard assessment using Remote Sensing data. In Geospatial crossroads @ GIForum’08—Proceedings of the geoinformatics forum Salzburg (pp. 262_267).

    Google Scholar 

  • Vrugt, J. A., & Robinson, B. A. (2007). Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3), 708–711.

    Article  Google Scholar 

  • Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8).

    Google Scholar 

  • Wagener, T., & Franks, S. W. (2005). Regional hydrological impacts of climatic change: Hydroclimatic variability (Vol. 2). (IAHS), International Assn of Hydrological Sciences.

    Google Scholar 

  • Woolhiser, D. A., Smith, R. E., & Goodrich, D. C. (1990). KINEROS: a kinematic runoff and erosion model: documentation and user manual (Vol. 77). US Department of Agriculture, Agricultural Research Service.

    Google Scholar 

  • Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1–4), 83–97.

    Article  Google Scholar 

  • Ye, L., Zhou, J., Gupta, H. V., Zhang, H., Zeng, X., & Chen, L. (2016). Efficient estimation of flood forecast prediction intervals via single-and multi-objective versions of the LUBE method. Hydrological Processes, 30(15), 2703–2716.

    Article  Google Scholar 

  • Ye, L., Zhou, J., Zeng, X., Guo, J., & Zhang, X. (2014). Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations. Journal of Hydrology, 519, 925–933.

    Article  Google Scholar 

  • Zhang, X., Srinivasan, R., & Liew, M. V. (2010). On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrological Processes: An International Journal, 24(8), 955–969.

    Article  Google Scholar 

Download references

Acknowledgements

The regional water authority of Golestan province is acknowledged for providing the required data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Memarian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pourreza-Bilondi, M., Memarian, H., Ghaffari, M., Komeh, Z. (2022). Multi-Objective Calibration of a Single-Event, Physically-Based Hydrological Model (KINEROS2) Using AMALGAM Approach. In: Bozorg-Haddad, O., Zolghadr-Asli, B. (eds) Computational Intelligence for Water and Environmental Sciences. Studies in Computational Intelligence, vol 1043. Springer, Singapore. https://doi.org/10.1007/978-981-19-2519-1_6

Download citation

Publish with us

Policies and ethics