Skip to main content

A Review of Blockchain Consensus Algorithm

  • Conference paper
  • First Online:
Expert Clouds and Applications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 444))

Abstract

The advent of Blockchain started when a mysterious person or organization with an alias Satoshi Nakamoto published a white paper named “Bitcoin: A Peer-to-Peer Electronic Cash System.” This paper introduced a digital currency with no middlemen and no central authority. This meant, no transaction taxes, secure transactions, and a uniform currency. Hence, started the expedition of Blockchain Technology. Blockchain Technology needs consensus algorithms to insert a valid block of data to the Blockchain and maintain its state. Due to the rapid developments in Blockchain Technology and it’s adaptation to a plethora of wide areas (games, digital art, medical records, etc.), a study of consensus algorithms is essential to help researchers and developers to adapt a consensus algorithm according to their needs (proof of resource or majority voting).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Masseport, B. Darties, R. Giroudeau, J. Lartigau, Proof of experience: empowering proof of work protocol with miner previous work, in 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS) (IEEE, 2020), pp. 57–58

    Google Scholar 

  2. K. Zheng, S. Zhang, X. Ma, Difficulty prediction for proof-of-work based blockchains, in 2020 IEEE 21st international Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (IEEE, 2020), pp. 1–5

    Google Scholar 

  3. R. Nakahara, H. Inaba, Proposal of fair proof-of-work system based on rating of user’s computing power, in 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE) (IEEE, 2018), pp. 746–748

    Google Scholar 

  4. N. Gavrilovic, V. Ciric, Design and evaluation of proof of work based anti-spam solution, in 2020 Zooming Innovation in Consumer Technologies Conference (ZINC) (IEEE, 2020), pp. 286–289

    Google Scholar 

  5. S.S. Hazari, Q.H. Mahmoud, A parallel proof of work to improve transaction speed and scalability in blockchain systems, in 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) (IEEE, 2019), pp. 0916–0921

    Google Scholar 

  6. P.R. Yogesh, Backtracking tool root-tracker to identify true source of cyber crime. Proc. Comput. Sci. 171, 1120–1128 (2020)

    Article  Google Scholar 

  7. Z. Feng, Q. Luo, Evaluating memory-hard proof-of-work algorithms on three processors. Proc. VLDB Endow. 13(6), 898–991 (2020)

    Article  Google Scholar 

  8. H. Alsabah, A. Capponi, Pitfalls of bitcoin’s proof-of-work: R&D arms race and mining centralization. Available at SSRN 3273982 (2020)

    Google Scholar 

  9. E.U.A. Seyitoglu, A.A. Yavuz, T. Hoang, Proof-of-useful-randomness: mitigating the energy waste in blockchain proof-of-work (2021)

    Google Scholar 

  10. S.R. Niya et al., Adaptation of proof-of-stake-based blockchains for IoT data streams, in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (IEEE, 2019)

    Google Scholar 

  11. G. Pattewar, N. Mahamuni, H. Nikam, O. Loka, R. Patil, Management of IoT devices security using blockchain—a review, in Sentimental Analysis and Deep Learning, pp. 735–743 (2022)

    Google Scholar 

  12. N. Nair, A.K. Dalal, A. Chhabra, N. Giri, Edu-coin: a proof of stake implementation of a decentralized skill validation application, in 2019 International Conference on Nascent Technologies in Engineering (ICNTE) (IEEE, 2019), pp. 1–4

    Google Scholar 

  13. D. Tosh et al., CloudPoS: a proof-of-stake consensus design for blockchain integrated cloud, in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD) (IEEE, 2018)

    Google Scholar 

  14. S. Leonardos, D. Reijsbergen, G. Piliouras, Weighted voting on the blockchain: improving consensus in proof of stake protocols. Int. J. Network Manage. 30(5), e2093 (2020)

    Article  Google Scholar 

  15. P. Gaži, A. Kiayias, A. Russell, Stake-bleeding attacks on proof-of-stake blockchains, in 2018 Crypto Valley Conference on Blockchain Technology (CVCBT) (IEEE, 2018)

    Google Scholar 

  16. S. Deore, R. Bachche, A. Bichave, R. Patil, Review on applications of blockchain for electronic health records systems, in International Conference on Image Processing and Capsule Networks (Springer, Cham, 2021), pp. 609–616

    Google Scholar 

  17. A. Pal, K. Kant, DC-PoET: proof-of-elapsed-time consensus with distributed coordination for blockchain networks, in 2021 IFIP Networking Conference (IFIP Networking) (IEEE, 2021), pp. 1–9

    Google Scholar 

  18. L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, W. Shi, On security analysis of proof-of-elapsed-time (PoET), in International Symposium on Stabilization, Safety, and Security of Distributed Systems (Springer, Cham, 2018), pp. 282–297

    Google Scholar 

  19. R.Y. Patil, M.A. Ranjanikar, A new network forensic investigation process model, in Mobile Computing and Sustainable Informatics (Springer, Singapore, 2022), pp. 139–146

    Google Scholar 

  20. F. Zhang, I. Eyal, R. Escriva, A. Juels, R. Van Renesse, {REM}: resource-efficient mining for blockchains, in 26th {USENIX} Security Symposium ({USENIX} Security 17), pp. 1427–1444 (2017)

    Google Scholar 

  21. A. Corso, Performance analysis of proof-of-elapsed-time (PoET) consensus in the sawtooth blockchain framework, Doctoral dissertation, University of Oregon, 2019

    Google Scholar 

  22. B. Ampel, M. Patton, H. Chen, Performance modeling of hyperledger sawtooth blockchain, in 2019 IEEE International Conference on Intelligence and Security Informatics (ISI) (IEEE, 2019), pp. 59–61

    Google Scholar 

  23. V. Costan, S. Devadas, Intel SGX explained. IACR Cryptol. ePrint Arch. 2016(86), 1–118 (2016)

    Google Scholar 

  24. C. Saraf, S. Sabadra, Blockchain platforms: a compendium, in 2018 IEEE International Conference on Innovative Research and Development (ICIRD) (IEEE, 2018), pp. 1–6

    Google Scholar 

  25. G.T. Nguyen, K. Kim, A survey about consensus algorithms used in blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018)

    Google Scholar 

  26. X. Zheng, W. Feng, Research on practical byzantine fault tolerant consensus algorithm based on blockchain. J. Phys: Conf. Ser. 1802, 032022 (2021). https://doi.org/10.1088/1742-6596/1802/3/032022

    Article  Google Scholar 

  27. W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, M.A. Imran, A scalable multi-layer PBFT consensus for blockchain. IEEE Trans. Parallel Distrib. Syst. 32(5), 1146–1160 (2021). https://doi.org/10.1109/TPDS.2020.3042392

  28. K. Lei, Q. Zhang, L. Xu, Z. Qi, Reputation-based byzantine fault-tolerance for consortium blockchain 604–611 (2018)

    Google Scholar 

  29. J. Seo, D. Ko, S. Kim, S. Park, A coordination technique for improving scalability of byzantine fault-tolerant consensus. Appl. Sci. 10(21), 7609 (2020)

    Google Scholar 

  30. Y.-A. Min, The modification of pBFT algorithm to increase network operations efficiency in private blockchains. Appl. Sci. 11, 6313 (2021). https://doi.org/10.3390/app111463131

  31. G. Golan Gueta et al., SBFT: a scalable and decentralized trust infrastructure, in 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 568–580 (2019). https://doi.org/10.1109/DSN.2019.00063

  32. H. Samy, A. Tammam, A. Fahmy, B. Hasan, Enhancing the performance of the blockchain consensus algorithm using multithreading technology. Ain Shams Eng. J. (2021)

    Google Scholar 

  33. D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, C. Qijun, A review on consensus algorithm of blockchain, in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2567–2572 (2017). https://doi.org/10.1109/SMC.2017.8123011

  34. M. Krstić, L. Krstić, Hyperledger frameworks with a special focus on hyperledger fabric. Vojnotehnicki glasnik 68, 639–663 (2020). https://doi.org/10.5937/vojtehg68-26206

    Article  Google Scholar 

  35. R.Y. Patil, S.R. Devane, Network forensic investigation protocol to identify true origin of cyber crime. J. King Saud Univ. Comput. Inf. Sci. (2019)

    Google Scholar 

  36. D. Sivaganesan, Performance estimation of sustainable smart farming with blockchain technology. IRO J. Sustain. Wirel. Syst. 3(2), 97–106 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Borse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borse, M., Shendkar, P., Undre, Y., Mahadik, A., Patil, R.Y. (2022). A Review of Blockchain Consensus Algorithm. In: Jacob, I.J., Kolandapalayam Shanmugam, S., Bestak, R. (eds) Expert Clouds and Applications. Lecture Notes in Networks and Systems, vol 444. Springer, Singapore. https://doi.org/10.1007/978-981-19-2500-9_31

Download citation

Publish with us

Policies and ethics